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Abstract: We quantify the precision and bias of dynamic light scattering optical coherence
tomography (DLS-OCT) measurements of the diffusion coefficient and flow speed for first and
second-order normalized autocovariance functions. For both diffusion and flow, the measurement
precision and accuracy are severely limited by correlations between the errors in the normalized
autocovariance function. We demonstrate a method of mixing statistically independent normalized
autocovariance functions at every time delay for removing these correlations. The mixing method
reduces the uncertainty in the obtained parameters by a factor of two but has no effect on the
standard error of the mean. We find that the precision in DLS-OCT is identical for different
averaging techniques but that the lowest bias is obtained by averaging the measured correlation
functions before fitting the model parameters. With our correlation mixing method, it is possible
to quantify the precision in DLS-OCT and verify whether the Cramer-Rao bound is reached.
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1. Introduction

Dynamic light scattering optical coherence tomography (DLS-OCT) relies on the measurement
of fluctuations of scattered light and coherence gating to obtain simultaneous depth-resolved
information about diffusive and translational motion of particles. Initially, DLS-OCT was used
for measuring diffusion coefficients [1] and flow speeds of particle suspensions [2–5]. Later,
several improvements have been suggested for increasing the DLS-OCT flow velocity dynamic
range [6,7].

DLS-OCT has the advantage over phase-resolved Doppler OCT that a flow can be measured for
zero Doppler angle. It can also be used for particle sizing where the particle size is determined
from the estimated diffusion coefficient using the Stokes-Einstein relation. The combined flow
and diffusion estimation is particularly interesting for in-line particle sizing during process
control [8]. Sensitivity and precision of phase-resolved Doppler OCT has been widely studied
and reported in literature [9–12]. However, there is very little information available about the
precision and bias of DLS-OCT diffusion and flow measurements. These are crucial for reliable
measurements, especially in medical and pharmaceutical applications. Effects of noise and bias
in OCT on the measured autocorrelation function have been reported [13], but their influence on
the underlying parameters remains unclear.

In this work we perform simulations, measurements, and a theoretical analysis to quantify
the precision and bias of diffusion and flow measurements using DLS-OCT. In our analysis,
we consider both the first and second-order normalized autocovariance functions, g1(z, τ) and
g2(z, τ), diffusive particle motion, and, for both dilute and non-dilute suspensions, translational
particle motion. We derive analytical expressions for the highest attainable precision using the
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Cramer-Rao bound and compare them with the obtained results. We also assess the bias for
different averaging techniques.

2. Theory

The geometry for OCT diffusion and flow measurements is described in [6,7]. The propagation
of the optical beam is described by a Gaussian beam along the z-direction. We assume that the
scattering process is stationary.

2.1. Correlation functions for particle diffusion

For a non-flowing particle suspension, the normalized depth-dependent autocovariance of the
OCT complex-valued signal in a backscattering geometry, including the effect of SNR, is given
by [3,4,13–15]

g1(z, τ) =
⟨E(z, t)E∗(z, t + τ)⟩t

⟨I(z, t)⟩t
=

e−Dq2τ

1 + 1
SNR(z)

= A1(z) e−Dq2τ , (1)

where E(z, t) is the depth and time-dependent complex-valued OCT signal, I(z, t) is the OCT
signal intensity, τ is the autocovariance time lag, A1(z) is the autocovariance amplitude containing
the effect of a diminishing signal-to-noise with depth [13], SNR(z) is the depth-dependent experi-
mental signal-to-noise ratio [7,13], D is the particle diffusion coefficient given by Stokes–Einstein
equation, and q = 2nk0 is the scattering wavenumber for the OCT backscattering probe con-
figuration with the incident light wavenumber in vacuum k0 and the medium refractive index
n. Equation (1) for g1(z, τ) is also known as the first-order autocorrelation function where
⟨E(z, t)⟩t = ⟨E∗(z, t)⟩t = 0. The signal-to-noise correction describes the non-zero time lag
autocorrelation. At τ = 0, the normalized correlation coefficient is unity.

The autocorrelation function of the mean-subtracted OCT signal intensity, also known as
the Pearson correlation or autocovariance, decays twice as fast than g1(z, τ) [1,15] and can be
expressed with the normalized second-order autocovariance using the Siegert relation [16,17]

g2(z, τ) =
⟨(I(z, t) − ⟨I(z, t)⟩t) (I(z, t + τ) − ⟨I(z, t)⟩t)⟩t

⟨I(z, t)⟩2
t

≈ |g1(z, τ)|2 =
e−2Dq2τ(︂

1 + 1
SNR(z)

)︂2 = A2(z)e−2Dq2τ , (2)

where A2(z) is a depth-dependent amplitude factor for the intensity autocorrelation function. For
a mean-subtracted intensity autocovariance, the Siegert relation states that g2(z, τ) is the square
of

|︁|︁g1(z, τ)
|︁|︁. In Eq. (2) we have assumed that the average number of particles in the scattering

volume, Ns, is sufficiently large (Ns ≫ 1) [16–19]. This ensures that the particle probability
distribution in the scattering volume and the scattered light fluctuations follow Gaussian statistics.
For a non-flowing particle suspension this requirement is almost always satisfied whenever the
backscattered OCT signal intensity from every voxel is high [7].

2.2. Correlation functions for particle flow

For diffusing and flowing particle suspensions the first-order normalized autocovariance function
magnitude is

|g1(z, τ)| = A1(z) e−Dq2τe
−

v2(z) sin2 θ τ2

2w2z e
−

v2(z) cos2 θ τ2

w2
0 , (3)

where v(z) is the depth-dependent total flow speed, θ is the Doppler angle, wz is the coherence
function waist, w0 is the Gaussian beam waist in focus, and A1(z) is the same SNR correction
factor as given in Eq. (1). We take the absolute value to get rid of the phase component in g1(z, τ)
originating from the particle translational motion along the optical axis [2–4].
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For flow measurements we focus on the second-order normalized autocovariance function,
g2(z, τ), that does not depend on the phase, is easier to implement, and can also be implemented
in phase-unstable OCT systems. Here, we differentiate between very dilute and non-dilute sample
regimes. For the flowing non-dilute particle suspensions, where the number of particles in the
scattering volume, Ns, is much greater than one, g2(z, τ) is again obtained using the Siegert
relation [3,4,6,14,15]

g2(z, τ) ≈ |g1(z, τ)|2 = A2(z)e−2Dq2τ e
−

v2(z) sin2 θ τ2

w2z e
−

2v2(z) cos2 θ τ2

w2
0 , (4)

where A2(z) is the same SNR correction factor as given in Eq. (2). Here, we have neglected the
effect of a gradient of the axial velocity on the autocovariance function [20]. In the non-dilute
regime the scattering process is strictly Gaussian [7].

In dilute suspensions, the expected number of particles in the scattering volume can be
significantly lower than 1. Therefore, for stationary particles certain depth voxels would give
zero signal. However, due to the translational particle motion, the scattering signal is obtained
from every voxel during the acquisition time. When the number of particles in the scattering
volume is very low, the scattering process becomes non-Gaussian, and the Siegert relationship
does not apply anymore [18,21,22]. In the dilute case with N ≲ 1, the second-order normalized
autocovariance is [7,13,19]

g2(z, τ) =
A3(z)23/2Ns(z)
23/2Ns(z) + 1

[︄
e−2Dq2τe

−
v2(z) sin2 θτ2

w2z e
−

2v2(z) cos2 θτ2

w2
0 +

1
23/2Ns(z)

e
−

v2(z) sin2 θτ2

w2z e−
2v2(z) cos2 θτ2

w2(z)

]︄
,

(5)
in which g1(z, τ) can be incorporated as follows

g2(z, τ) =
A3(z)23/2Ns(z)
23/2Ns(z) + 1

[︄
|g1(z, τ)|2

A2
1(z)

+
1

23/2Ns(z)
e
−

v2(z) sin2 θτ2

w2z e−
2v2(z) cos2 θτ2

w2(z)

]︄
. (6)

Here, A3(z) is given by

A3(z) =
κ(z) − 1

κ(z) − 2 +
(︂
1 + 1

SNR(z)

)︂2 , (7)

where w(z) is the radius of the local beam waist, Ns(z) is the average depth-dependent number
of particles in the scattering volume [7,19], and κ(z) is the kurtosis of the noise-subtracted
complex field distribution. The kurtosis can also be expressed as a ratio of the average squared
noise-subtracted intensity to the squared mean noise-subtracted intensity. It can be obtained
using the measured OCT signal intensity I(z, t) and the signal-to-noise ratio,

κ(z) = 2 +
(︃
1 +

1
SNR(z)

)︃2 (︃
⟨I2(z, t)⟩t
⟨I(z, t)⟩2

t
− 2

)︃
, (8)

which simplifies to κ(z) = 2 for the Gaussian scattering process with A2(z) = A3(z) =(︂
1 + 1

SNR(z)

)︂−2
. The kurtosis can be depth-dependent for the non-Gaussian process due to

different signal intensities and particle flow speeds at different depths. In our previous study
[7] we assumed κ(z) = 2, even though the scattering process was non-Gaussian. This made our
analysis simpler considering that κ(z) minimally affects A3(z) when the signal-to-noise ratio is
sufficient. Here Eqs. (5)–(8) use no assumptions on the scattering process, κ(z), and do not
impose any restrictions on the number of particles.
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2.3. Precision of diffusion and flow estimation

Precision is defined as the spread of the measurement around the mean and can be quantified
by the square root of the measurement variance. For DLS-OCT the precision is governed by
random errors, i.e., unpredictable changes in the measured intensity. Since the particle diffusion
coefficient and the flow speed are determined by fitting the models from Sec. 2.1 and Sec. 2.2
to the measured g1(z, τ) and g2(z, τ), the precision of the fit parameters is determined by the
random errors of the normalized autocovariance function at different time delays. The maximum
obtainable precision in the fit parameters is determined by the Cramer-Rao lower bound (CRLB).
It is computed by inverting the Fisher information matrix [23]. For calculating the Cramer-Rao
lower bound the probability distribution functions of g1(z, τ) and g2(z, τ) must be known. The
correlation coefficients from a long time series data are approximately normally distributed
[24–26]. Typical diffusion or flow measurements contain at least thousands of temporal sampling
points, which is more than enough to assume that g1(z, τ) and g2(z, τ) are normally distributed
at every time delay. In general, errors (residuals) at different time delays can be correlated.
Calculating the CRLB becomes challenging because we don’t know the error correlations and
their impact on the model bias. To address this, we assume uncorrelated residuals. In this case,
for M observations g(z, τ1), g(z, τ2), . . . g(z, τM) with N model (fit) parameters p1, p2, . . . pN , the
Fisher matrix F is an N × N symmetric matrix given by

Fij =

M∑︂
m=1

1
σ2(z, τm)

∂g(z, τm)
∂pi

∂g(z, τm)
∂pj

, (9)

where τm is the discretized τ for index m. The observations depend on the model parameters
and have a variance σ2(z, τm). In our analysis the observations are g1(z, τm) or g2(z, τm) and the
summation is performed over all considered time delays.

The covariance matrix of the model parameters is obtained by inverting the Fisher information
matrix. Consequently, the variances of our model parameters, σ2

pj , are represented by the diagonal
entries of the covariance matrix. This relationship is described by the equation

σ2
pj =

(︁
F−1)︁

jj . (10)

2.3.1. Precision of estimating the diffusion coefficient

For a non-flowing particle suspension the diffusion coefficient is determined by fitting Eq. (1) to
the real part of g1(z, τm), with A1(z) and D being the fit (model) parameters. The lowest attainable
variance CRLB in the fitted diffusion coefficient, assuming uncorrelated noise in the Fisher
information matrix, is given by

σ2
CRLB, Dℜ(g1)

(z) =

M∑︂
m=1

e−2Dq2τm

σ2
ℜ(g1)

(z, τm)

M∑︂
m=1

A2
1(z)q

4τ2
me−2Dq2τm

σ2
ℜ(g1)

(z, τm)

M∑︂
m=1

e−2Dq2τm

σ2
ℜ(g1)

(z, τm)
−

(︄
M∑︂

m=1

A1(z)q2τme−2Dq2τm

σ2
ℜ(g1)

(z, τm)

)︄2 ,

(11)
where σ2

ℜ(g1)
(z, τm) represents the variance of the real part of g1(z, τm), which is half of the

variance of the complex g1(z, τm). It can be obtained with simulations or measurements and can
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also be derived analytically using

σ2
R(g1)

(z, τm) =
1
2

(︄
⟨I(z, t)I (z, t + τm)⟩t

⟨I(z, t)⟩2
t

−
⟨E(z, t)E∗ (z, t + τm)⟩2

t

⟨I(z, t)⟩2
t

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

variance in the real part of g1(z,τm)

×

1
M

(︂
1 −ℜ (g1 (z, τm))2

)︂2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
unexplained variance

(︄
1 + 2

∑︂
τm>0
R (g1 (z, τm))2

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

long-lag correction

=

1
2M

(︂
1 + 2

∑︂
R (g1 (z, τm))2

)︂ (︂
1 − R (g1 (z, τm))2

)︂2
,

(12)

where M is the total number of temporal sampling points (time series length). The first term
represents the variance in the real part of the field autocorrelation and is equal to one half, the
second term is a correction for the explained variance in the Pearson correlation coefficient
[24–28], and the third term is a long-lag correction for the effect of the correlation magnitude
on the variance [29]. As expected, σ2

ℜ(g1)
(z, τm) = 0 when ℜ

(︁
g1(z, τm)

)︁
= 1. Even though

g1(z, τm) is complex in nature, we only consider its real part when fitting the diffusion coefficient.
According to Eq. (1), in non-flowing suspensions, the imaginary part ℑ(g1(z, τm)) is pure noise
and contains no information about the particle diffusion. Therefore, in phase-stable systems it is
always beneficial to use the real part ℜ(g1(z, τm)) instead of the absolute value |g1(z, τm)|.

A similar analysis can be performed with g2(z, τm). In this case we use Eq. (2) for fitting with
model parameters D and A2(z). The Cramer-Rao lower bound on the variance of the diffusion
coefficient, when using the second-order normalized autocovariance function, is

σ2
CRLB, Dg2

(z) =

M∑︂
m=1

e−4Dq2τm

σ2
g2 (z, τm)

M∑︂
m=1

4A2
2(z)q

4τ2
me−4Dq2τm

σ2
g2 (z, τm)

M∑︂
m=1

e−4Dq2τm

σ2
g2 (z, τm)

−

(︄
M∑︂

m=1

2A2(z)q2τme−4Dq2τm

σ2
g2 (z, τm)

)︄2 , (13)

with σ2
g2 (z, τm) being the variance of g2(z, τm) given by

σ2
g2 (z, τm) =

(︁
1 − g2

2(z, τm)
)︁2

M

⎛⎜⎜⎜⎜⎝
⟨︃(︂

I(z, t) −
⟨︁
I(z, t)

⟩︁
t

)︂2 (︂
I(z, t + τm) −

⟨︁
I(z, t)

⟩︁
t

)︂2
⟩︃

t⟨︁
I(z, t)

⟩︁4
t

−

⟨︃(︂
I(z, t) −

⟨︁
I(z, t)

⟩︁
t

)︂ (︂
I(z, t + τm) −

⟨︁
I(z, t)

⟩︁
t

)︂⟩︃2

t⟨︁
I(z, t)

⟩︁4
t

⎞⎟⎟⎟⎟⎠
(︂
1 + 2

∑︂
τm>0

g2(z, τm)2
)︂
=

1 + 4g2(z, τm) + 3g2(z, τm)2

M

(︂
1 + 2

∑︂
τm>0

g2
2(z, τm)

)︂ (︂
1 − g2(z, τm)2

)︂2
.

(14)

Here the higher order (3rd and 4th) intensity autocorrelation functions were calculated using
theory derived by Lemieux et al. [30]. This analysis is limited to the Gaussian scattering process.
Equation (14) incorporates the Siegert relation and relies on the fact that the diffusive g1(z, τm) is
real-valued.
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2.3.2. Precision of velocity estimation

The velocity of a non-dilute flowing particle suspension can be obtained by fitting Eq. (4) at
every depth z to the measured g2(z, τm). In this case v(z) and A2(z) are the model parameters,
while D, w0, wz, and θ are assumed to be exactly known a-priori (calibrated). The minimum
achievable variance of the flow speed v is given by

σ2
CRLB, vg2

(z) =

M∑︂
m=1

e−2v2(z)Bτ2
m−4Dq2τm

σ2
g2 (z, τm)

M∑︂
m=1

4A2
2(z)v

2(z)B2τ4
me−2v2(z)Bτ2

m−4Dq2τm

σ2
g2 (z, τm)

M∑︂
m=1

e−2v2(z)Bτ2
m−4Dq2τm

σ2
g2 (z, τm)

−

(︄
M∑︂

m=1

2A2(z)v(z)Bτ2
me−2v2(z)Bτ2

m−4Dq2τm

σ2
g2 (z, τm)

)︄2 ,

(15)

with B =
2 cos2 θ

w2
0
+

sin2 θ

w2
z

, (16)

where σ2
g2 (z, τm) can also be computed analytically similar to Eq. (14) using [30]. However, in

this case phase terms of g1(z, τm) need to be taken into account.
For a dilute suspension the velocity can be determined by fitting Eq. (5) to the measured

g2(z, τm). In this case v(z) and A3(z) are the model parameters, while D, w0, w(z), wz, Ns(z) and θ
are assumed to be known in advance. The minimum achievable variance of the flow speed is
given by

σ2
CRLBdilute, vg2

(z) =

M∑︂
m=1

1
σ2

g2 (z, τm)

(︃
∂g2(z, τm)
∂A3(z)

)︃2

M∑︂
m=1

1
σ2

g2 (z, τm)

(︃
∂g2(z, τm)
∂A3(z)

)︃2 M∑︂
m=1

1
σ2

g2 (z, τm)
,
(︃
∂g2(z, τm)
∂v(z)

)︃2
−

(︄
M∑︂

m=1

1
σ2

g2 (z, τm)
∂g2(z, τm)
∂A3(z)

∂g2(z, τm)
∂v(z)

)︄2 ,

(17)
with

∂g2(z, τm)
∂A3(z)

=
23/2Ns(z)

23/2Ns(z) + 1

(︄
e−v2(z)Bτ2

m−2Dq2τm +
e−v2(z)C(z)τ2

m

23/2Ns(z)

)︄
, (18)

∂g2(z, τm)
∂v(z)

= −
2A3(z)v(z)τ2

m23/2Ns(z)
23/2Ns(z) + 1

(︄
Be−v2(z)Bτ2

m−2Dq2τm +
Ce−v2(z)C(z)τ2

m

23/2Ns(z)

)︄
, (19)

and C(z) =
2 cos2 θ

w(z)2
+

sin2 θ

w2
z

, (20)

where σ2
g2 (z, τm) can no more be calculated using an equation similar to Eq. (14) using [30] due

to a non-Gaussian scattering process.
For comparison, the minimum achievable variance of the flow speed when using

|︁|︁g1(z, τm)
|︁|︁

from Eq. (3) is independent of the particle concentration and given by

σ2
CRLB,v |g1 |

(z) =

M∑︂
m=1

e−v2(z)Bτ2
m−2Dq2τm

σ2
|g1 |

(z, τm)

M∑︂
m=1

A2
1(z)v

2(z)B2τ4
me−v2(z)Bτ2

m−2Dq2τm

σ2
|g1 |

(z, τm)

M∑︂
m=1

e−v2(z)Bτ2
m−2Dq2τm

σ2
|g1 |

(z, τm)
−

(︄
M∑︂

m=1

A1(z)v(z)Bτ2
me−v2(z)Bτ2

m−2Dq2τm

σ2
|g1 |

(z, τm)

)︄2 .

(21)

2.4. Bias of diffusion and flow estimation

Bias in DLS-OCT is determined by systematic errors in the correlation function and is a measure
of the accuracy of the method. The bias is not random but leads to a consistent over or under
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estimation of the fit parameter. The systematic errors arise when the model parameters in
DLS-OCT are determined by fitting the models from Sec. 2 to the measured g1(z, τm) and
g2(z, τm). These error sources are:

• Estimation bias in g2(z, τm) due to subtraction of the sample mean instead of the true
mean from the OCT signal intensity. This introduces an almost constant offset to the
normalized autocovariance function given by [31]

g2biased (z, τm) = g2true (z, τm) −
(︂
ΠM,m +

m
M − m

(︁
ΠM,0 − ΠM,m

)︁ )︂
, with (22)

ΠM,m =
1

M(M − 2m)

M∑︂
i=1

M−m∑︂
j=m+1

g2true (z, τ|i−j |), (23)

where g2biased (z, τm) and g2true (z, τm) are biased and unbiased correlation coefficients, respec-
tively. Calculation of the bias requires a-priori knowledge of a true correlation coefficient,
which is not possible in practice. The estimation bias term in Eq. (22) is independent
of the correlation coefficient and depends only on the correlation decay rate, SNR, and
M. It can be reduced by increasing the intensity time series length with respect to the
characteristic decay time of g2(z, τm). As reported in literature [13], the estimation bias
(also referred to as the statistical bias) also affects the amplitude and decay rate of g2(z, τm)
and even contains a random component which is not included in Eq. (22). This randomness
can be reduced by averaging multiple g2(z, τm). Theoretically both g1(z, τm) and g2(z, τm)
suffer from the additional estimation bias when subtracting a DC term from the OCT
interference spectra before inverse Fourier transformation, if the DC term is estimated
from the interference time series itself. In our analysis this effect is neglected.

• Sampling distribution bias in g1(z, τm) and g2(z, τm) is caused by the slight skewness
of the correlation coefficient distribution [28] leading to a bias of the sample mean with
respect to the true value. This bias depends on the correlation coefficient and decreases with
increasing time series length as the distribution better approaches a normal distribution. A
simple correction factor for this bias is given by [25,26,28]

gbiased(z, τm) = gtrue(z, τm)
(︃
1 −

1 − g2
true(z, τm)
2M

)︃
, (24)

which is negligible for long acquisitions. For example, the sampling distribution bias
for our diffusion measurements in Sec. 5.1 is of the order of 0.01% of the correlation
coefficient and can be disregarded without any corrections.

• Curve fitting bias in g1(z, τm) and g2(z, τm) is caused by the use of incorrect fit models.
For example, the exponential fit curves from Sec. 2 cannot be negative at any time delay,
whereas measured g1(z, τm) and g2(z, τm) can be, due to their probability distributions. So,
fits to g1(z, τm) and g2(z, τm) with asymmetric noise will be slightly biased, which can
happen if random errors are correlated along τm. This bias can be lowered by increasing
the time series length and reducing the variance of g1(z, τm) and g2(z, τm). Additional
fit bias arises if a wrong model is used in the analysis, i.e., a non-dilute model for very
dilute suspensions, static fit models for flowing samples, etc. Furthermore, the models
are based on assumptions that may be invalid. For example, we assume that the mean
scattering wavenumber q is exactly known and that the scattering process is stationary.
The polydispersity in particle size and refractive index can also add to the bias. Estimation
bias also adds to the fit bias since it introduces a constant offset that cannot be incorporated
in the models.
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The bias for a sufficiently large M is predominantly represented by estimation and curve fitting
errors. Since it affects the normalized autocovariance functions and not directly the model
parameters, its influence on the fitted diffusion coefficient and the flow speed cannot be evaluated
analytically. Predicting the bias is also impossible experimentally due to a lack of a-priori
knowledge and is only feasible using simulations. In addition, systematic errors make our
estimators from Sec. 2 biased which affect the random errors and prevents us from reaching the
maximum precision of our model parameters.

3. OCT signal simulations for flow and diffusion

In simulations we generate a complex OCT signal scattered from an ensemble of particles with
random (diffusion) and directional (flow) motion. The signal intensity and the normalized
autocovariance functions are subsequently calculated. This is repeated Nb times which allows us
to compute the autocorrelation variances at every time delay.

3.1. Simulation of diffusion

Noiseless time-dependent complex field scattered from Np diffusing particles is simulated using

E0(t) =
Np∑︂
j=1

e−2ik0nzj(t), (25)

where zj(t) is the jth particle axial position at time t due to the Brownian motion generated using
normally distributed steps with σ =

√
2D∆t. The initial particle positions zj(0) are uniformly

distributed in space. In Eq. (25) we have neglected the effect of the PSF on the scattered field
fluctuations [3], considered motion solely in the depth direction, and assumed that all particles
have an identical scattering cross section. The effects of Brownian motion in the lateral direction
can be disregarded since they occur on a timescale much longer than that assessed with DLS-OCT.
Inclusion of the noise in the scattered field then leads to [32,33]

E(z, t) = E0(t) + eiϕ(t)

⌜⃓⎷
⟨|E0(t)|2

⟩︂
t

SNR(z)
, (26)

where φ(t) is a time-dependent random phase angle uniformly distributed between 0 to 2π. Note
that this is only a good approximation when SNR ≫ 1 because we assume that field magnitude
fluctuations are negligible and the noise originates purely from the random phase angle.

3.2. Simulation of flow

The scattered field from suspensions flowing perpendicular to the beam optical axis is simulated
by replacing E0(t) in Eq. (26) with

E0(z, t) =
Np∑︂
j=1

e−2ik0nzj(t)e
−2(xj+v(z)t)2

w2(z) e
−ik0(xj+v(z)t)2

R2(z) , (27)

where v(z) is the depth-dependent transverse bulk velocity, w(z) is the local beam waist, R(z)
the radius of curvature of the Gaussian beam, and xj is the uniformly distributed initial random
transverse position of jth particle. The additional factor 2 in the radial PSF function is due to
coupling efficiency of the scattered light in a confocal setup [2,3,34].

As we solely model the transverse flow, leading to identical decorrelation regardless of its
direction within the transverse plane, we consider only one lateral dimension, denoted as x. This
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allows us to reduce the computational complexity and the number of required particles to be
modeled. The particles are simulated with random, uniformly distributed x-positions between
−L(z) and +L(z) given by

L(z) =
Np

√
πw0

4Ns(z)
, (28)

where Ns(z) is the number of particles in the scattering volume and Np is the total number of
simulated particles. Equation (28) guarantees that the number of particles in the scattering
volume is always Ns(z) and does not depend on Np. The scattering volume (length) for 1D flow
simulations is an integral of the intensity PSF over all space [7,19] and equals to

√
πw0/2. Since

we confine our modeling to the x-dimension spanning from −L(z) to +L(z), as the particles move
with the bulk velocity v(z) and exit the simulated space, they are reintroduced based on the
periodic boundary conditions.

Simulations using Eq. (27) are valid for arbitrary particle concentrations. For non-dilute
particle suspensions with Ns ≫ 1, the normalized flow autocovariance functions from Sec. 2.2
depend only on the beam waist in focus and are independent of w(z) and R(z). In this case Eq. (27)
simplifies into

E0(z, t) =
Np∑︂
j=1

e−2ik0nzj(t)e
−2(xj+v(z)t)2

w2
0 , (29)

with w0 being the beam waist in focus. Therefore, the simulations of non-dilute flowing
suspensions do not require a-priori knowledge of any other beam shape parameter except w0.
Even though the models in this section are given for the transverse flow, they can be readily
extended to incorporate the flow component along the beam optical axis.

4. Materials and methods

4.1. OCT system

The experiments were performed using a Thorlabs GANYMEDE II HR series spectral domain
OCT system, which has been described in detail in our previous works [6,7]. The acquisition
rate was 5.5 kHz for diffusion and dilute flow measurements (low-speed), and 36 kHz for
non-dilute flow measurements (high-speed). The acquired signal spectrum was measured with a
spectrometer with 2048 pixels. The maximum imaging depth in air is 1.87 µm. After acquisition,
the measured spectrum was first resampled to a linearly-sampled wavenumber domain and then
apodized using a Gaussian filter. After the apodization, the measured coherence function waist
in sample was wz = 2.11 µm. We have neglected the effect of a gradient of the axial velocity
on the autocovariance function for two reasons [20]. First, the Doppler angle in this work is
essentially zero (θ ≈ 0). Second, our optical resolution is high both in axial and transverse
directions compared to the flow channel dimensions. Hence, the flow velocity within PSF can be
assumed to be constant.

The OCT system is operated with a scan lens (LSM04-BB, Thorlabs) in a confocal setup with a
manufacturer provided focal spot size of w0 = 6 µm in air which was validated by axial confocal
response measurements [6,7]. The system has NA = 0.05. Depending on the angle of incidence,
refractive index contrast and Gaussian beam parameters, w0 and w(z) vary somewhat because of
the passage of the beam through the various interfaces [35]. Therefore, for flow measurements
w(z) and w0 were calibrated using the procedures described in [6,7]. Since for the given OCT
setup the coherence length is small and the NA is very low, it can be assumed that the scattering
angle is 180◦ and the scattering wavenumber q in the correlation analysis is constant at q = 2nk0.
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4.2. Averaging strategies

We acquire Nb separate OCT interference time traces, S(k0, tm), each having a length of M, to
compute Nb normalized autocovariance functions. Measurements conducted under identical
conditions can be averaged. The processing and averaging steps of DLS-OCT are illustrated in
Fig. 1. Non-linear curve fitting is utilized, truncating the autocorrelation functions when they
reach zero and are fully decorrelated. From Nb measurements, three distinct approaches are used
to derive the average model parameters:

• This first approach (method 1), represented by the orange arrow, involves fitting our models
to each g1(z, τm) and g2(z, τm) and subsequently averaging the resulting Nb parameters. We
denote this method as D and v for diffusion and flow measurements, respectively, and it is
also referred to as the standard method by us.

• The second approach (method 2), indicated by the red arrow, is to average Nb normalized
autocovariance functions and perform the curve fitting procedure on the averaged data.
This approach is denoted as Dg and vg for diffusion and flow measurements, respectively.

• The third approach (method 3), denoted by the blue arrow, is a mixing method developed
by us. It begins by creating an Nb × M matrix containing Nb statistically independent
autocorrelation functions along each row. Subsequently, the jth column is circularly shifted
by an integer number j − 1, with the shifting being performed in the same direction for
every column. This process generates a resultant 2D matrix where each row represents a
mixed autocorrelation function containing only one correlation coefficient from any single
time trace. Finally, our models are fitted to the Nb mixed autocorrelation functions, and
the obtained parameters are averaged. This method is denoted as mixed D and mixed v for
diffusion and flow measurements, respectively. The mixing method is illustrated in Fig. 2
using simple autocorrelation functions with Nb = M = 3. The superscript indicates the
statistically independent measurements.

For a single time trace measurement the precision is given by the standard deviation (σD and σv),
but when averaging multiple measurements the precision is given by the standard error of the
mean (σaverage D and σaverage v). Averaging Nb uncorrelated measurements lowers the variance by
a factor of Nb. For positively correlated measurements, the decrease is slower.

When averaging the fitted model parameters, σ2
D and σ2

v are reduced upon averaging, whereas
when averaging the autocorrelation functions, σ2

g1 and σ2
g2 are scaled at all time delays and

the noise is reduced. As Eq. (11,13,15,17) show, multiplying σ2
g1 or σ2

g2 by a constant N−1
b at

every τm results in the identical scaling of σ2
D and σ2

v . This holds true for both uncorrelated and
correlated random variables. As the averaging sequence does not influence the noise correlation,
for unbiased or even slightly biased estimators identical overall precision is expected for the first

Fig. 1. Data processing steps for obtaining D and v from OCT data with different averaging
techniques.
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the obtained parameters are averaged. This method is denoted as mixed 𝐷 and mixed 𝑣 for314
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For a single time trace measurement the precision is given by the standard deviation (𝜎𝐷 and 𝜎𝑣),319

but when averaging multiple measurements the precision is given by the standard error of the320

mean (𝜎average 𝐷 and 𝜎average 𝑣). Averaging 𝑁𝑏 uncorrelated measurements lowers the variance321

by a factor of 𝑁𝑏. For positively correlated measurements, the decrease is slower.322

When averaging the fitted model parameters, 𝜎2
𝐷

and 𝜎2
𝑣 are reduced upon averaging, whereas323

when averaging the autocorrelation functions, 𝜎2
𝑔1 and 𝜎2

𝑔2 are scaled at all time delays and the324

noise is reduced. As Eq. (11,13,15,17) show, multiplying 𝜎2
𝑔1 or 𝜎2

𝑔2 by a constant 𝑁−1
𝑏

at every325
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𝐷

and 𝜎2
𝑣 . This holds true for both uncorrelated and326

correlated random variables. As the averaging sequence does not influence the noise correlation,327

for unbiased or even slightly biased estimators identical overall precision is expected for the first328

Fig. 2. Schematic overview of the calculation of standard and mixed autocorrelation
functions.

and second approaches. In the third approach, if the autocorrelation noise at different time delays
is correlated, we anticipate that the mixing process will eliminate the correlation in the noise.

Bias cannot be improved by averaging. However, one of the sources of the bias is the estimation
bias which, according to Sec. 2.4, exhibits some random nature. Hence, mixing or averaging
the correlation functions can reduce this variability. Therefore, we study the bias for all three
averaging schemes. The bias is generally very small compared to the measurement uncertainty,
and due to a lack of a-priori information it can only be quantified using simulations.

4.3. Diffusion measurements

For diffusion measurements the acquisition rate was 5.5 kHz which is the highest sensitivity
setting of our OCT system. All measurements are performed using monodisperse 50 nm radius
silica particles with a volume fraction fv ≈ 1%, provided by CWK (Chemiewerk Bad Köstritz
GmbH, Germany). In total 1100 depth-resolved measurements were performed with a time
series length of 4096 points covering T = 0.74 s. From this data 1100 correlation functions
g1(z, τm) and g2(z, τm) were calculated at every depth. For diffusion analysis only the real part of
g1(z, τm) was used. Since the OCT sensitivity decreases in depth [36], a usable depth-range of
0.92 mm was chosen where the fitted diffusion coefficients were constant and where the single
scattering regime holds. The reference diffusion coefficient was calculated by fitting Eq. (1) to
the mean ℜ

(︁
g1(z, τm)

)︁
and averaging the resulting diffusion coefficients over the chosen depth

range, resulting in D0 = 4.02 ± 0.02 µm2/s which corresponded to a mean particle radius of 53
nm. The SNR at every depth was calculated based on Eq. (1) using the fitted A1(z). Simulations
were performed using the same parameters as input. In total 10000 simulations were performed
for each SNR. Simulated variances were used for calculating the Cramer-Rao lower bounds using
Eq. (11) and Eq. (13). Precision as a function of SNR for both diffusion measurements and
simulations was determined by computing the standard deviation and the standard error of the
mean in the fitted diffusion coefficient both when using ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm). The bias for

different averaging schemes was assessed using simulations.

4.4. Flow measurements

The flow was generated using a syringe pump with a variable discharge rate (Fusion 100, Chemyx,
Inc.). The flow geometry was aligned so that θ ≈ 0. This minimized the velocity gradient effect
on the correlation [20] and simplified the beam waist calibration. Other than that, the effect of a
nonzero Doppler angle on DLS-OCT is minimal because of similar optical resolutions in axial
and transverse directions.

4.4.1. Non-dilute flow measurements

For non-dilute flow measurements we used 20 mL syringe (Terumo Europe NV) and OCT
acquisition rate of 36 kHz. Diluted Intralipid solutions were used as a sample with a particle
volume fraction fv ≈ 0.6%. The flow passes through a quartz rectangular flow cell with internal
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dimensions of 0.2 mm depth and 10 mm width (type 45-F, Starna Scientific). M-scan 1D
measurements were performed at the center width of the flow cell as a function of depth with
discharge rates of 1.5 and 2 mL/min. The beam focus was moved away from the center depth of
the sample to increase the number of particles in the scattering volume and reduce the effect of
number fluctuations [18,19]. The particle diffusion coefficient and the beam waist in focus were
calibrated using a g2(z, τm) based on lateral scanning over the static sample [6] and were found to
be D = 1.40± 0.09 µm2/s and w0 = 8.08± 0.31 µm, respectively. The flow speed was determined
by fitting Eq. (3,4) to the measured or simulated first and second-order autocovariance functions.
The depth-dependent SNR was calculated from the fitted autocovariance magnitude. In total
1000 measurements and 10000 simulations were performed with a time series length of 4096.
The average depth-dependent flow velocities and SNR values from measurements were used
as the input for simulations. Simulated variances were used for calculating the Cramer-Rao
lower bounds both for |g1(z, τm)| and g2(z, τm). The bias for different averaging schemes was also
determined using simulations.

4.4.2. Dilute flow measurements

Dilute flow measurements were performed with the second-order normalized autocovariance
function using the number fluctuations analysis. The OCT acquisition rate was 5.5 kHz and a
5 mL syringe (BD Plastipak) was used. Experiments were performed using a monodisperse
suspension of polystyrene particles with volume fraction fv ≈ 0.006% and expected particle radius
of 230 − 250 nm, provided by InProcess-LSP. The flow passes through a quartz rectangular flow
cell with internal dimensions of 0.5 mm depth and 10 mm width (type 45-F, Starna Scientific).
M-scan 1D measurements were performed at the center width of the flow cell as a function of
depth at discharge rates of 0.15 and 0.225 mL/min. In contrast to our previous work, where only
the number fluctuation term was used [7], here we use the full model from Eq. (5).

The particle diffusion coefficient was determined (calibrated) in the stationary suspension
using ℜ

(︁
g1(z, τm)

)︁
and Eq. (1). The obtained diffusion coefficient of D0 = 1.00 ± 0.03 µm2/s

corresponded to an average particle radius of 220 nm. The beam shape calibration procedure
was identical to that in [7], but the analysis was slightly different because of using the full
autocorrelation model. The SNR at every depth was calculated by fitting Eq. (3) to the measured|︁|︁g1(z, τm)

|︁|︁. The kurtosis was determined using Eq. (8). Then A3(z) was found based on Eq. (7)
using the known SNR and kurtosis. Finally, Eq. (6) was fitted to the measured g2(z, τm) with
Ns(z) and w(z) being the fit parameters and using A3(z), SNR, and the measured

|︁|︁g1(z, τm)
|︁|︁. The

obtained beam shape w(z) was fitted using w(z) = w0

√︂
1 + (z − z0)2/z2

R, with w0, z0, and zR being
the free parameters equaling 6.45 ± 0.02 µm, 187 ± 3 µm and 293 ± 3 µm, respectively. The
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Fig. 3. Obtained (a) beam shape w(z) and (b) particle volume fraction fv as a function of
depth.
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particle volume fraction fv was computed using w(z), D0, wz and Ns(z) according to [7]. It is
given in Fig. 3(a,b) along with the obtained w(z).

The obtained wz(z) and Ns(z) were used in subsequent number fluctuation flow measurements.
In total, 750 measurements were performed each with a time series length of 8192. The flow speed
was determined by fitting Eq. (5) to the measured second-order autocovariance function with
A3(z) and v(z) being the free parameters. Simulations for the dilute regime were not performed
due to the adverse effects of boundary conditions and long computational times. Therefore, the
measured variances were used for calculating the Cramer-Rao bounds. Even though number
fluctuations are only present in g2(z, τm), for comparison the CRLB for |g1(z, τm)| was also
determined.

5. Results

5.1. DLS-OCT diffusion measurement

Depth dependent diffusion measurements were performed on a static particle suspension.
Examples of measured ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) for SNR = 100 are shown in Fig. 4(a). Observe

here that the autocorrelation functions do not oscillate around the mean, but, instead, consistently
remain above or below it for some time. From Nb measured normalized autocovariance curves
(signal ACF), the normalized autocovariances of errors (error ACF) in the measured and simulated
ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) were calculated using

ρe (z, τe) =
⟨(g (z, τm) − ḡ (z, τm)) (g (z, τm + τe) − ḡ (z, τm + τe))⟩τm

σ2
e (z)

, (30)

where g(z, τm) is the measured normalized autocovariance function, g(z, τm) is its average from
Nb measurements, and σ2

e (z) is the variance of g(z, τm) − g(z, τm) along the τm axis.
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Fig. 4. Example (a) standard and (b) mixed autocorrelation functions (signal ACF) for
SNR = 100. (c,d) Measured (points) and simulated (lines) error ACF, ρe(z, τe).

Figure 4(c,d) illustrates that in standard autocorrelation functions, errors at different time
delays exhibit strong correlation. This means that the magnitude and direction of errors in
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ℜ
(︁
g1(z, τm)

)︁
or g2(z, τm) at small τm significantly affect the errors at larger τm, which can be

observed from the fact that any single autocorrelation function is consistently above or below the
mean autocorrelation function. As described in Sec. 4.2, we implement a novel way of reducing
these correlations or even completely eliminating them by mixing different autocorrelation
functions at every τm. The number of independent autocorrelation functions used for mixing is
denoted by Nmix. To fully get rid of the correlations Nmix must be greater or equal to the number
of sampling points it takes for ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) to go to zero. For g2(z, τm) it takes

fewer realizations to eliminate correlations because it decays twice as fast.
Figure 4(b-d) show that for a single fully mixed ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) with sufficiently

large Nmix the errors at different τm are completely uncorrelated. As a result, the measured mixed
autocorrelation data oscillate approximately around the mean as a function of τm. With standard
(unmixed) measurements, as shown in Fig. 4(a), error ACF is nonzero and every measured
ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) deviates from the mean autocorrelation function. Figure 4(c,d) show

that once the autocorrelation functions are sufficiently mixed (e.g. Nmix = 32), error ACF
becomes a delta function. At intermediate mixing ratios (Nmix = 4) error ACF becomes periodic
as the correlations reappear at later time points.

5.1.1. Precision in diffusion estimation

Next, we look at the diffusion estimation precision from a single autocorrelation measurement.
To estimate the precision, the autocorrelation variance at every time delay needs to be known.
Figure 5(a,b) show measured, simulated, and analytical variances from Eq. (12), (14) for
the diffusive ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) at different SNR values. All three match relatively

well with each other. The variances are higher for larger SNR values, but, in this case the
correlation coefficients are also larger. Even though the variances of ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm)

are comparable at larger time delays, σ2
g2 (z, τm) is significantly larger at small τm. The different

shape of σ2
g2 (z, τm) and its sharp increase at small τm is due to the mean subtraction from the

intensity time series.
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Fig. 5. Measured, simulated, and analytical variances of diffusion only (a) g1(z, τm) and (b)
g2(z, τm).

Figure 6(a,b) show measured and simulated standard deviations in the fitted diffusion coefficient
from a single correlation function, as well as the Cramer-Rao lower bound calculated with
Eq. (11) and (13, where the z-dependence is converted to SNR. The results are based on 10000
simulations and 1100 measurements. Here D0 was calculated from the measured ℜ

(︁
g1(z, τm)

)︁
as

described in Sec. 4.3 and subsequently used as input for simulations. The obtained σD strongly
depends on whether the errors in our normalized autocovariance functions are correlated. The
obtained σD from the standard measurements is several factors larger than the Cramer-Rao lower
bound. After mixing the resulting σD matches very well with the Cramer-Rao bound and we
achieve the most precise determination of the diffusion coefficient possible. The measured and
simulated σD overlap each other except for g2(z, τm) at very low SNR values. Here the simulations
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underestimates the error. The lowest spread in the fitted D, given by σD, is obtained when mixing
the normalized autocovariance functions for removing the error correlations. However, this
requires many measurements, as shown in Fig. 6(a,b), and is therefore less relevant for practical
applications with few measurements. Typically, the number of DLS-OCT measurements is on
the order of 5-10.
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Fig. 6. Measured (points) and simulated (lines) standard deviation for estimating the diffusion
coefficient from a single autocorrelation function and the corresponding Cramer-Rao lower
bound for (a) g1(z, τm) and (b) g2(z, τm).

Figure 7(a,b) show the standard deviation (spread) in the diffusion coefficient obtained
from fitting a single correlation function as a function of the number of measurements Nb.
For conventional DLS-OCT measurements without mixing, σD is constant as expected for
independent measurements. When employing autocorrelation mixing we see that σD decreases
with increasing Nb until reaching the CRLB and after which it remains constant with Nb. For
g2(z, τm) it takes fewer measurements for σD to reach the CRLB.
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Fig. 7. (a,b) Standard deviation and (c,d) standard error of the fitted diffusion coefficient as a
function of the number of averaged correlation functions for SNR = 100. Points correspond
to DLS-OCT measurements and lines denote simulations.

In DLS-OCT measurements are averaged to improve the precision. In this case the measurement
precision is given by the standard error of the mean, σaverage D. Figure 7(c) shows simulated
and measured standard error of the mean diffusion coefficient, σaverage D, as a function of Nb
for different averaging techniques. The standard error of the mean is identical for all three
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averaging methods, even though σD itself is different depending on error correlations. The
decrease is proportional to Nb

−1/2. Figure 7(d) shows how σaverage D is related to σD for the three
different averaging techniques. For the standard analysis we see that σaverage D =

σD√
Nb

for both
averaging methods. However, when mixing the normalized autocovariance functions, we notice
that σaverage D>

σD√
Nb

as the fitted diffusion coefficients now become statistically interdependent.
Here σaverage D initially decreases very slowly with Nb and then starts to reduce faster above a
certain Nb. This coincides with the Nb at which the CRLB is reached in Fig. 7(a,b). In Fig. 7(d)
there is a small discrepancy between measurements and simulations at large Nb which caused by
the lack of sufficient number of averaged measurements.

5.1.2. Bias in diffusion estimation

The bias in the average diffusion coefficient is determined by comparing the averaged D to
a ground truth. We average 1100 and 10000 values of D in measurements and simulations,
respectively. With this large set of averages we can assume that the random errors are negligible
and only the systematic errors remain. Figure 8(a,b) shows the measured diffusion coefficients
as a function of SNR for both ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) with different averaging schemes.

Figure 8(c,d) show the same results but obtained using simulations. In this case the input D0
is also displayed. Both in measurements and simulations we can observe that mixing different
correlation functions slightly reduces the bias. However, the lowest bias is obtained for Dḡ when
averaging the correlation functions. This is more evident for g2(z, τm). The differences for the
three techniques are minimal for ℜ

(︁
g1(z, τm)

)︁
. Overall, the bias is much smaller and less affected

by SNR when using ℜ
(︁
g1(z, τm)

)︁
compared to g2(z, τm).
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Fig. 8. Diffusion coefficients as a function of SNR and averaging scheme determined using
(a,b) measurements and (c,d) simulations.

The trends from both measurements and simulations in Fig. 8(a,b) and Fig. 8(c,d) are similar,
however for the measurements we lack a-priori knowledge of the ground truth D0. Therefore, it
is not possible to compare the bias directly between measurements and simulations. This can be
rectified on a relative basis by not comparing the absolute deviation from D0, but the relative
bias with respect to the most accurate method (correlation averaging). Figure 9(a,b) displays the
relative bias when averaging the fitted diffusion coefficients with respect to averagingℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) first and then fitting the diffusion coefficient. The obtained measurements and
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simulations are in perfect agreement except for g2(z, τm) at very low SNR values. This emphasizes
the reliability of our simulations and that they can be used for determining the absolute bias.
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The bias of the mean diffusion coefficient from Fig. 8(c,d) is determined by averaging over a
large number of simulations. Figure 10(a,b) show simulated systematic errors as a function of the
number of averaged measurements Nb for ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm). For ℜ

(︁
g1(z, τm)

)︁
the bias

is very low and almost independent of Nb, as expected. The bias is more significant for g2(z, τm).
Figure 10(b) shows the estimation bias due to mean subtraction modeled using Eq. (22). This is
the main source of bias for g2(z, τm) which is absent in ℜ

(︁
g1(z, τm)

)︁
. The estimation bias also

contains a random component which averages out with increasing number of measurements.
As a result, the bias in g2(z, τ) initially decreases with Nb until reaching the minimum and then
remains constant. Overall, the bias is minimal when averaging the autocorrelation functions.
The second best technique is mixing the autocorrelation functions before the curve fitting and
averaging the fitted diffusion coefficients. The worst approach is to the fit model parameters to
the standard autocorrelation functions and then average them.
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5.2. Non-dilute DLS-OCT flow measurement

Precision analysis of flow was performed for DLS-OCT
|︁|︁g1(z, τm)

|︁|︁ and g2(z, τm) measurements of
a laminar transverse flow corrected for diffusion. Figure 11(a,b) show measured and simulated
variances at different flow speeds in the channel, good agreement between the two is observed.
The variances are higher with lower flow speeds, but do not depend much on the SNR. The
highest SNR value in the channel was above 100, and the lowest was 6. This is sufficiently high
to neglect the SNR dependence of σv for plotting purposes and display it only as a function of
the flow speed. Velocity profiles, shown in Fig. 12(a), were obtained by averaging the measured
correlation functions and were subsequently used as ground-truth input for simulations.
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Figure 12(c,d) show measured and simulated standard deviation in the fitted flow speed as
a function of velocity. Results are obtained using both the standard method with correlated
errors and the mixing technique with uncorrelated errors are given. Similar to diffusion, mixing
decreases the spread in the obtained velocity. For comparison, the Cramer-Rao lower bounds for
g2(z, τm) and |g1(z, τ)|, calculated using Eq. (15) and (21), are also displayed. The theoretical
Cramer-Rao bound for |g1(z, τ)| is lower than for g2(z, τm). For both methods there is a good
agreement between measurements and simulations. The obtained σv from measurements and
simulations is significantly improved when mixing removes the error correlations and matches
well with the Cramer-Rao bound, especially for g2(z, τm). In general, the standard deviation in
the flow speed decreases with lower velocities. However, it does not decrease to zero and has a
certain minimum value. Below the threshold velocity σv starts to increase because of diffusion.
This is only clearly visible when the errors are not correlated.

Figure 12(b) displays the simulated bias for different averaging schemes both for |g1(z, τ)|
and g2(z, τm). The bias was calculated with respect to the simulation input which included both
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depth-dependent velocity and SNR profiles. The simulated bias is lowest when averaging the
complex g1(z, τm), taking the absolute value and then fitting v(z). This is denoted by the black
curve. The second lowest bias is obtained when averaging g2(z, τm) and then fitting v(z) or when
mixing g2(z, τm), fitting and averaging v(z). In this case the errors are identical and given by the
red curve. This approach is only marginally less accurate than the former method. The third best
method relies on using the standard g2(z, τm), fitting and then averaging v(z). This approach is
less accurate than the second best method only at low flow speeds. The largest bias is obtained
when using |g1(z, τ)| to fit v(z) and then average the obtained velocities. In this case the sample
population is significantly skewed and the mixing method has virtually no effect.

5.3. Dilute DLS-OCT flow measurement

Similar to non-dilute, we analyse precision of dilute DLS-OCT flow measurements where the
effect of diffusion is absent in g2(z, τm). Also for this case we obtained the variance of the
correlation function for different flow speeds. The results look similar to the non-dilute case,
except there is no overshoot at small τm. Figure 13(a,b) show dilute flow measurements using
the second-order normalized autocovariance function incorporating the number fluctuations.
Velocity profiles are shown in Fig. 13(a) which were again obtained by averaging the measured
correlation functions. The lowest SNR value in the channel was again around 6, and the highest
was above 100. In Fig. 13 we have again neglected the SNR dependence for the same reasons as
mentioned in Sec. 5.2 and plot σv only as a function of the velocity.
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Fig. 13. Dilute flow measurements. (a) Measured flow profiles using g2(z, τm). (b)
Measured σv using g2(z, τm) and the corresponding CRLB.

Figure 13(b) shows the measured standard deviation in the fitted flow speed as a function of
velocity. Results using both the standard g2(z, τm) with correlated errors and the mixed g2(z, τm)
with uncorrelated errors are given. Measurements using

|︁|︁g1(z, τm)
|︁|︁ are not shown because they

are too noisy and have a significantly larger σv. For comparison, the Cramer-Rao lower bounds
for g2(z, τm), calculated with Eq. (17), and |g1(z, τm)|, calculated with Eq. (21), are also displayed.
Here we used the measured variances of σ2

g2 (z, τm) and σ2
|g1 |

(z, τm) for calculating the Cramer-Rao
lower bounds. The Cramer-Rao bound for g2(z, τm) is considerable lower than for |g1(z, τm)| and
agrees very well with our measurements. When using g2(z, τm) the velocity standard deviation
decreases, with decreasing velocity, to zero. However, this is not the case with

|︁|︁g1(z, τm)
|︁|︁. As the

Cramer-Rao lower bound shows, σv increases dramatically at lower flower speeds when using
|g1(z, τm)|. This happens because

|︁|︁g1(z, τm)
|︁|︁ in Eq. (3) is ultimately limited by particle diffusion

and is independent of number fluctuations. The second-order normalized autocovariance function
in Eq. (5), on the other hand, contains the number fluctuation term that is independent D. This
increases the velocity precision for this method at extremely low flow speeds. For number
fluctuation DLS-OCT no bias analysis is performed because of boundary condition limitations
and increasing computational complexity of our simulations.
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6. Discussion

In this work we review autocorrelation averaging and mixing techniques for reducing random
and systematic errors. In the absence of an analytical model for error correlations, only using the
mixing method suggested by us, it is possible to quantify the precision in DLS-OCT and verify
whether the CRLB is reached. In diffusion measurements using the average real part of g1(z, τm)
results in the highest accuracy and precision. In flow measurements it is more reliable and
convenient to use the average g2(z, τm) because it is not affected by the sampling distribution bias,
does not depend on phase and can be implemented in phase-unstable systems. It is important to
note that mixing and/or averaging of the autocorrelation functions can only be performed using
the autocorrelation functions with the same SNR (and identical optical or sample properties). For
single scattering diffusion measurements where D is constant as a function of depth (SNR), we
can also average the measurements with different signal-to-noise ratios. In this case the measured
g1(z, τm) and g2(z, τm) first have to be noise-corrected [13] before any further processing.

6.1. DLS-OCT diffusion estimation

Random error correlations in ℜ
(︁
g1(z, τm)

)︁
and g2(z, τm) are the main reason for σD not reaching

the theoretical Cramer-Rao bound. Once these correlations are removed by mixing, the standard
deviation in the fitted diffusion coefficient is reduced significantly and reaches the CRLB. The
improvement is bigger for larger SNR values since ℜ

(︁
g1(z, τm)

)︁
and g2(z, τm) are lower in the

presence of more noise and hence the random errors are less correlated. The improvement with
mixing is less for g2(z, τm) because it decays faster and therefore correlations play less of a role in
the precision. We can conclude that faster decorrelations and smaller autocovariance magnitudes,
i.e., more noisy measurements, are less affected by mixing. We have not derived analytical
expressions for ρe, but our observations suggest that it depends on the autocorrelation decay rate
and also experiences a delta function noise decorrelation at τm = 0.

Even though the improvement in σD due to mixing is significant, practical applications of
the mixing technique for increasing the measurement precision are limited. In order to reduce
some of the error correlations we need at least two measurements. Mixing just 2 measurements
already provides us with a significant improvement in σD. However, the precision of the average
diffusion coefficient when using multiple measurements is given by the standard error of the
mean, σaverage D, which is identical for all averaging techniques with or without mixing the
correlation functions. So, even though σD is significantly lower when mixing the autocorrelation
functions, it does not decrease as fast with averaging because the mixed autocorrelation functions
are not statistically independent anymore. As a result, the fitted diffusion coefficients are also
interdependent and σaverage D ≠

σD√
Nb

. When ℜ
(︁
g1(z, τm)

)︁
or g2(z, τm) are not mixed, σaverage D is

proportional to N−1/2
b because every fitted D is independent. With mixing we basically move

the error correlations from ℜ
(︁
g1(z, τm)

)︁
and g2(z, τm) to the fitted D. Therefore, the actual

measurement precision is identical for all averaging methods and cannot be improved any further.
We noticed that systematic errors are much larger when using g2(z, τm) compared toℜ

(︁
g1(z, τm)

)︁
and are dominated by the estimation bias. Averaging Nb measurements slightly reduces the bias
in g2(z, τm) but only to a certain limit, beyond which the errors remain constant. This is probably
caused by variability and randomness in the estimation bias which averages out and diminishes
with increasing Nb. We have mentioned that in phase-stable systems it is always preferable to
utilize ℜ(g1(z, τm)) instead of |g1(z, τ)|. Using |g1(z, τ)| adversely affects the bias because the
autocorrelation coefficients are always positive. This leads to a higher sampling distribution bias
which is otherwise negligible. Overall, random errors are larger than systematic errors unless we
average thousands of measurements.

There is an asymptotic dependence of precision and bias on SNR. Therefore, the benefits
of using extremely high signal-to-noise ratios are rather limited. As Fig. 6(b) and Fig. 9(b)
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show, there is a mismatch between simulations and measurements at very low SNR when using
g2(z, τm). This is caused by the specific noise model used in our simulations [33] that is based on
the assumption that the signal intensity is much larger than the noise intensity. However, this
assumption is not valid at low SNR values. As a result, this noise model overestimates A2(z) at
low SNR values, leading to the lower σD.

6.2. DLS-OCT flow estimation

Both in dilute and non-dilute flow measurements, the standard deviation (spread) in the fitted
velocity is significantly reduced when the error correlations are removed. In non-dilute flows,
σv decreases with decreasing velocity and then starts to increase at very low flow speeds. A
minimum in the error occurs because the diffusive limit is reached. At this stage, any further
reduction in the velocity does not affect autocorrelation functions or their variances. According
to Eq. (15), the velocity is explicitly included in the denominator of σ2

CRLB, v. As a result, σv
starts to increase when the diffusive limit is reached. This behaviour is overshadowed by error
correlations and is only visible when employing correlation function mixing.

For non-dilute flow the Cramer-Rao bound for g2(z, τ) is slightly lower than the simulated
σv at larger velocities, which itself is marginally lower than the measured σv. The difference
between simulations and the Cramer-Rao bound is probably because of the Siegert approximation.
In this case, the approximate number of particles in the scattering volume is around 49 both
in simulations and measurements. This could be sufficiently low to violate the large number
of particle assumption and have a small effect on g2(z, τm). Furthermore, the offset between
measurements and simulations can be caused by galvo or pump instabilities. The Cramer-Rao
bound of |g1(z, τ)| shows that on paper it is possible to achieve higher precision in non-dilute
flow measurements when using g1(z, τ) instead of g2(z, τ). However, in practice this is more
problematic. The mismatch among measurements, simulations and the Cramer-Rao bound at all
velocities is considerably larger for |g1(z, τ)| compared to g2(z, τ). This is largely caused by the
bias of the sampling distribution and the limited phase stability.

Theoretically, the lowest bias in non-dilute flow measurements can also be achieved when
using |g1(z, τ)| by averaging the complex autocorrelation functions first, then taking the absolute
value, and then fitting v(z). However, getting rid of the sampling distribution bias when taking the
absolute value requires sufficient averaging of the complex g1(z, τm). In our work we averaged
1000 autocorrelation functions which in real-time flow measurements is impossible. Insufficient
averaging will result in oscillations with

|︁|︁g1(z, τm)
|︁|︁>0. In this work we have not investigated the

dependence of the sampling distribution bias on the number of measurements. However, it is
clear that with fewer measurements it is preferred to use g2(z, τ) as it does not suffer from the
population skewness.

Similar to diffusion, random velocity errors in flow measurements are also generally larger
than systematic errors. However, at very low speeds both errors become comparable. Despite
some advantages of

|︁|︁g1(z, τm)
|︁|︁, for practical reasons it is more convenient to use g2(z, τm) in

non-dilute flows. In dilute low-speed flows it is always preferable to use g2(z, τm) because it is
not limited by the particle diffusion.

7. Conclusion

We have investigated precision and bias of diffusion coefficient and flow speed measurements
using DLS-OCT based on the first and second-order normalized autocovariance functions. We
found that errors in the autocovariance functions are strongly correlated. This significantly
reduces the precision and bias of fit parameters and prevents us from reaching the Cramer-Rao
lower bound. We demonstrated that mixing different autocovariance functions at every time
delay before the curve fitting procedure reduces the standard deviation in the fitted parameters
and reaches the Cramer-Rao lower bound. This proves the validity of our DLS-OCT models.
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When using the mixing technique the correlations are transferred to the fitted parameters and the
standard error of the mean remains unchanged. We conclude that the precision in DLS-OCT is
identical for all averaging techniques and ultimately limited by correlations between the random
variables. The bias is lowest when averaging the measured normalized autocovariance functions
before fitting the model parameters.
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