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Abstract: We present a frequency domain analysis of the image resolution of optical tomography
systems. The result of our analysis is a description of the spatially-variant resolution in optical
tomographic image after reconstruction as a function of the properties of the imaging system
geometry. We validate our model using optical projection tomography (OPT) measurements
of fluorescent beads embedded in agarose gel. Our model correctly describes both the radial
and tangential resolution of the measured images. In addition, we present a correction of
the tomographic images for the spatially-varying resolution using a deconvolution algorithm.
The resulting corrected tomographic reconstruction shows a homogeneous and isotropic pixel-
limited resolution across the entire image. Our method is applied to OPT measurements of a
zebrafish, showing improved resolution. Aside from allowing image correction and providing
a resolution measure for OPT systems, our model provides a powerful tool for the design of
optical tomographic systems.
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1. Introduction

Three dimensional imaging of cells and small animals is of great importance in the biological
and medical sciences as our knowledge on human diseases is based on the structure and function
of cells and organisms. Optical techniques can provide cost effective, high-resolution, 3D images
of the structure of cells and small animals. In addition, by using labelled molecules, fluorescence
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imaging can give information about the function of cells and tissue.
Currently, several optical techniques are used for whole cell and small animal imaging.

Microscopy is a tool for imaging live cells. Light sheet microscopy uses a light illumination sheet
and images the emission from perpendicular to the sheet. It is used for imaging sub-millimeter
sized samples [1]. 3D imaging studies of millimeter sized samples have used optical projection
tomography (OPT) [2]. OPT measures projections of transmission or emission and reconstructs
the object from the projections. OPT is used for imaging small animals such as zebrafish and
mouse embryos, whole organs taken from adult mice, and plant tissue. It can be used in-vivo,
or ex-vivo in combination with optical clearing techniques that suppress light scattering. OPT
has the advantage of being able to create 3D images in both transmission and fluorescent modes,
hence OPT is useful to study gene expression, tissue morphology and locations of fluorescently
labelled tissues. In transmission mode, OPT resembles X-ray CT, in fluorescent mode, OPT is
more similar to single-photon emission computed tomography (SPECT) imaging. In both cases
optical radiation is used instead of X-rays or gamma quanta.

In contrast to X-ray CT and SPECT imaging, the use of visible light in OPT allows for the use
of lenses to relay and magnify the projection images and achieve micrometer spatial resolution.
A drawback of the use of lenses is the limited depth sensitivity, related to the finite depth of field
of the optical imaging system. Generally, the resolution of the images is inversely proportional to
the numerical aperture (NA) of the collecting lens. However, high NA lenses have a small depth
of field, meaning that objects are only in focus in a small region around the focal plane. Using
high NA lenses in OPT causes some parts of the sample to have a high resolution in a projection,
while other parts are out of focus and have a low resolution.

Several studies have identified this problem and proposed methods to reduce its effect. The
depth of focus can be extended by focusing on a plane between the center of rotation and the
edge of the sample and recording projections over the full range of 360 [3]. Alternatively, data
from multiple focal planes can be combined by either simultaneous measurement [4] or scanning
of the lens focus through the object [5]. While recording data from multiple focal planes solves
the issue of the depth of field, the increased number of measurements requires longer acquisition
times and increased complexity of the OPT system.

Several numerical approaches have been proposed to correct for resolution blurring in OPT.
Based on the frequency distance relationship (FDR) [6], OPT tomograms can be corrected for
the out of focus deterioration of resolution [7]. The effects of the axial intensity distribution and
defocus on the point spread function (PSF) can also be compensated by using a weighted filtered
backprojection [8]. More recently, the full modulation transfer function (MTF) of the imaging
optics was included as an additional filter in the filtered backprojection process [9]. While
obtaining a significant reduction in image background and artefacts using an MTF mask, the
MTF correction with deconvolution did not fully correct for the tangential blurring observed in
the system. McErlean et al. [10] investigated a possible spatial resolution improvement by image
deconvolution with an experimentally determined PSF. However, they used a spatially-invariant
PSF thereby obtaining less than optimum resolution.

The aim of this study is to quantify the effect of the imaging optics on the reconstructed images
in optical tomography. In the first section we quantify this effect using a frequency domain
analysis of the image resolution in a single projection and in the reconstructed tomographic image.
In the second section we propose and verify our model for the spatially-variant resolution of the
tomographic imaging system using OPT measurements of a sample consisting of fluorescent
beads. Then, we use the derived point spread function to deconvolute the reconstructed image. A
close to pixel-limited resolution after image deconvolution is demonstrated for the fluorescent
bead sample. We also apply our method to a zebrafish sample. Finally, our results, and their
implications for optical tomography, are discussed.
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2. Theory

In an optical tomography system, the spatially-variant PSF is directly related to the PSF of the
imaging system that makes every projection. Here we use a Fourier optics description of the PSF
of the imaging system to derive the PSF of the tomography system. Our analysis is demonstrated
for fluorescence tomography, but is equally valid for transmission optical tomography.

2.1. Image formation of a single projection

Consider an object with fluorescence distribution f (t , s, z). In fluorescent tomography the light
emitted by the object is focussed onto a 2D detector to create projections of the object, as shown
in Fig. 1. We assume that all fluorophores are excited at the same rate and emit isotropically. In
addition, it is assumed that any emitted fluorescence can reach the detector unimpeded. Hence,
effects of reabsorption, light attenuation and refraction of fluorescent light are not taken into
account. The intensity in the image space is described by a convolution of the object function,
f (t , s, z), with the incoherent PSF of the imaging optics |h(t , s, z) |2, where h(t , s, z) describes
the coherent PSF of the imaging system [11]. The system images the plane s = 0 in object space
onto the plane s′ = 0 in image space. The intensity distribution in image space p(t′ , s′ , z′) is
given by a 3D convolution with the PSF

p(t′ , s′ , z′) = f (t , s, z) ⊗ |h(t , s, z) |2 . (1)

If a detector is placed in the focal plane s′ = 0, the intensity distribution on the detector is

p(t′ , z′) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

f (t′ − t , s′ − s, z′ − z) |h(t , s, z) |2dtdsdz

∣∣∣∣∣∣∣∣
s′=0

. (2)

This equation shows the main difference between OPT and straight ray based tomography. If
|h(t , s, z) |2 = δ(t , z) Eq. 2 reduces to the line integral along s for the intensity of a single point
in the projection. OPT deviates from straight ray based tomography as the measured projection
points do not only sample a straight line from the source to the detector, but instead sample a
complex volume of the object, described by the PSF |h(t , s, z) |2.
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z

s

t

z’

s’

t’

Δz

2δz.

.

Fig. 1. Schematic representation of the lens imaging system for the detection of a single
projection

2.2. Tomographic point spread function

In tomographic imaging a collection of projections, acquired at different angles θ are used to
construct a tomographic image of the object. Figure 2(a) shows a top view of the object plane
with the coordinate systems used in the derivation. In the following analysis we assume that the
rotation axis coincides with the z-axis, i.e., the rotation axis is in the focal plane, and the detector
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is positioned at s′ = 0. In the reference frame of the detector (t′ , s′ , z′), a projection p at angle
θ is given by Eq. (2). If the projection is taken at angle θ, this is equivalent to a rotation of the
object f through angle −θ. The relation between the object coordinates in the rotating frame
(x , y, z) and the stationary (detector) frame of reference (t , s, z) is given byt

s
z

 =

cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1


x
y
z

 . (3)

The resolution of the tomographic imaging system is calculated by determining the response
to a point object function, i.e., f (x , y, z) = δ(x − xo , y − yo , z − zo ) = δ(t − to , s − so , z − zo ),
as shown in Fig. 2(a). Without loss of generality we assume the point object to be placed in the
plane zo = 0 hence the PSF from Eq. (2) is

p(θ, t′ , z′) = |h(t′ − to , −so , z′) |2 . (4)

Every individual horizontal slice of the object is reconstructed from horizontal sections of all the
2D projections. These horizontal sections correspond to one or several rows of detector pixels at
the corresponding vertical position of the slice.

p(θ, t′) =

∆z+δz∫
∆z−δz

|h(t′ − to , so , z) |2dz , (5)

with ∆z the vertical distance between the point source and the slice, and 2δz the slice thickness.
The set of all 1D projections is called a sinogram.
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Fig. 2. (a) Schematic representation of the coordinate systems in the object and camera
frames of reference. The point object is represented by coordinates (xo , yo ), (b) Frequency
domain representation of the reconstructed image for a point object. The frequency content
is composed of the frequency content of the individual projections, as indicated for a single
projection at angle θ. (c) Reconstructed image resulting from a point object

To obtain the frequency description of the projection we take the Fourier transform of Eq. (5)
along the transverse coordinate t, to obtain

P(θ, f t ) = F {p(θ, t′)} . (6)

Assuming a parallel-beam geometry the projection slice theorem states that the 2D Fourier
transform of the image of the object, denoted with OTF ( f x , fy ), is composed of the frequency
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content of the projections P(θ, f t ) [12]. Each projection P(θ, f t ) forms the radial cross-section
of OTF ( f x , fy ) at angle θ, as shown in Fig. 2(b). The OTF is calculated from Eq. (6) by
substitution of

so = so (θ) = rosin(θo − θ) , (7)

θ = tan−1
(

fy
f x

)
, (8)

r2
o = x2

o + y2
o , (9)

and
f t =

√
f 2
x + f 2

y . (10)

Subsequent 2D inverse Fourier transform of OTF ( f x , fy ) yields the position dependent PSF, as
illustrated in Fig. 2(c).

2.2.1. Gaussian beam PSF

The PSF of the tomographic imaging system can be calculated from the PSF of the imaging
optics |h(t , s, z) |2. In general, |h(t , s, z) |2 can have a complicated shape. Here, we assume the
imaging PSF is a focused Gaussian beam described by

|h(t , s, z) |2 =
2

πw2(s)
exp

(
−

2(t2 + z2)
w2(s)

)
, (11)

where w(s) is the beam waist, given by

w(s) =

√
w2

0 +
λ2s2

π2w2
0

, (12)

with λ the emission wavelength of the fluorophore and w0 the Gaussian beam waist defined as the
e−1 value of the field amplitude in focus [13]. Substituting Eq. (11) into Eq. (5) and performing
the integration in the z direction over the height of the detector row results in

p(θ, t′) =
√

2π
A(θ)

πw2(so (θ))
exp

(
−

2[t′ − to]2

w2(so (θ))

)
, (13)

with

A(θ) =
1
2

erf

 √
2

w2(so (θ))
(∆z + δz)

 − erf

 √
2

w2(so (θ))
(∆z − δz)

 . (14)

Fourier transformation in the transversal t′ direction gives

P(θ, f t ) = A(θ) exp
(
−
π2w2(so (θ)) f 2

t

2

)
exp (−2πito f t ) . (15)

When the slice is thick with respect to the spotsize of the point source on the detector, we can
take the limit δz −→ ∞, resulting in A(θ) −→ 1. Using the relations (7)-(10), the OTF of the
tomographic system is

OTF ( f x , fy ) = exp

− π2( f 2
x + f 2

y )

2

w2
0 +

λ2r2
osin2(θo − θ)
π2w2

0

exp
(
−2πi

(
xo f x + yo fy

))
(16)

The last exponential term in Eq. (16) is a phase term resulting from the shift of the point object
(xo , yo ) in real space. Equation (16) can be simplified by introducing a shifted and rotated
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coordinate system (u, v), where u and v respectively represent the radial and tangential directions
in the reconstructed image, as shown in Fig. 2(c) and given by[

u
v

]
=

[
cos(−θo ) − sin(−θo )
sin(−θo ) cos(−θo )

] [
x − xo
y − yo

]
, (17)

with the frequency domain counterpart ( fu , fv ). This centers the point source on the origin in
the real domain and removes the Fourier-shift term in the OTF, giving

OTF ( fu , fv ) = exp

−1
2
π2( f 2

u + f 2
v )

w2
0 +

λ2

π2w2
0

(
r2
osin2(θu )

) , (18)

where θu = θo − θ now denotes the angle with the u axis. Further simplification using sin2(θu ) =
v2

u2+v2 =
f 2
v

f 2
u+ f 2

v
reduces the expression to

OTF ( fu , fv ) = exp

−1
2
π2

( f 2
u + f 2

v )w2
0 +

λ2

π2w2
0

(
r2
o f 2

v

) , (19)

Equation (19) is separable into two factors with dependence on u and v only, and is further
simplified to

OTF ( fu , fv ) =
1

2πw2
0

exp
(
−π2

(
f 2
uau + f 2

vav

))
, (20)

with au = w2
0/2 and av =

(
w2

0 +
λ2r 2

o

π2w2
0

)
/2 = w2(ro )/2. Taking the inverse Fourier transform of

Eq. (20) we obtain the PSF of the tomographic imaging system

PSF (u, v) =

√
1

π2auav

exp
(
−

[
u2

au
+

v2

av

])
, (21)

which is the main theoretical result of this section. Figure 3(a) shows the modelled optical
tomography PSF at several positions in the reconstructed image. The example is calculated with
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Fig. 3. (a) Effect of the PSF on the tomographic image for point sources located at various
positions (xo , yo ), indicated at the top and right. (b) Theoretical FWHM resolution in the
radial and tangential direction as function of the radial distance from the center of rotation.

w0 = 10 µm and λ = 515 nm. The PSF in the center of the image is isotropic and has a width
w0 in all directions. The effect of the lens system PSF away from the center results in a radial
resolution of w0 independent of radial position, however the tangential resolution deteriorates as
the radial position of the object increases. Figure 3(b) shows a quantification of this effect as the
tangential resolution increases with the radial distance from the center.
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3. Methods

3.1. Experimental setup

A schematic of the fluorescence OPT setup is shown in Fig. 4. A collimated beam of light with a
wavelength of 488 nm is created using an Argon laser (150m Select, Laser Physics). The output
power of the laser is adjusted using a neutral density filter wheel (NDC-100C04M, Thorlabs).
The beam is expanded with a 4f lens system consisting of two lenses with a focal length of
10 mm (LB1157, Thorlabs), and 1000 mm (LB1859, Thorlabs). The sample is placed in a
cuvette (Hellma, HELL704001-30-10) with inner dimensions 30×30×30 mm (length × width
× height). After passing through a color filter, the fluorescent light is detected using a camera
(ORCA-ER, Hamamatsu) with an imaging lens assembly (Optem Fusion, Qioptic). The imaging
lens assembly consist of a 1.67× objective lens (35-00-04-000, Qioptic) and a 1.0× tube lens
(35-08-06-000, Qioptic). The numerical aperture of the lens assembly can be adjusted using an
adjustable aperture stop (35-07-25-000, Qioptic) placed between the objective and the tube lens.
The sample is mounted on a stage assembly to perform x, y and z translation (8MT167M-25LS,
Standa) as well as a θ rotation (8MR151, Standa). An x − y translation mount (SCP05, Thorlabs),
and a tip-tilt mount (KC05-T/M, Thorlabs) enable fine tuning of the position of the rotation axis
and the sample. The agarose sample is attached to the lower end of the tip-tilt mount using a
custom metal cylinder and glue.

A total of 360 projections are recorded at 1 intervals. Measurements are performed with a
camera integration time of 5.0 seconds and a laser output power of 28.13 mW. The measurement
time of a complete sinogram is approximately 35 minutes.

LS
L2 TS

PH
F

C

CA

NDF

L1

L3

C

TT

XY

Z

X
Y

θ

Fig. 4. Schematic representation of the experimental OPT setup. LS: Light source, NDF:
neutral density filter, PH: pinhole, C: cuvette, TS: translation stage assembly, F: filter, L1 L2
and L3 Lenses, CA, camera, XY: manual x and y translation mount, TT: tip-tilt mount, θ:
rotation stage, X: x translation stage, Y: y translation stage, Z: z translation stage.

3.2. Calibration and performance

The PSF of the imaging lens system (L3) is characterized by its beam waist as function of
the distance from the focal plane w(s). The PSF is measured by imaging a straight knife edge
inside the water-filled cuvette at multiple distances from the focal plane using the translation
stage assembly. The measured PSF is fitted using a Gaussian function for all the measured stage
translations to determine w(s) and w0, which is subsequently used to predict the PSF in the
reconstructed images. The measured beam waist in water at the focus is w0 = (6.2 ± 0.1) µm.

The axis of rotation of the sample is aligned with the middle pixel column of the camera and
positioned in the focal plane using the stage assembly and the tip-tilt adjuster. The center of the
sample is positioned at the center of rotation using the x − y adjuster.
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3.3. Sample preparation

Green fluorescent silica particles (KI-PSI-G4.0, Kisker) with a diameter of 4.0 µm are suspended
in 1%, low melting point agarose gel (H26417.14, VWR). The fluorescent particles have peak
excitation and emission wavelengths of 485 nm and 510 nm respectively. During measurements
the agarose phantom is submersed in a cuvette filled with demineralized water to reduce refractive-
index differences at the borders of the sample.

A ten day old transgenic zebrafish larvae expressing membrane bound green fluorescent
protein (GFP) from a beta-actin promoter is mounted in low melting point agarose and imaged in
the OPT system. Before mounting, the zebrafish larvae is euthanized in ice water in the Erasmus
Medical Center, Rotterdam according to animal welfare regulations. Animal experiments are
approved by the Animal Experimentation Committee of the Erasmus MC, Rotterdam. Imaging
of the zebrafish is performed using an additional 7 : 1 manual zoom section (35-31-10-000,
Qioptic) in the lens assembly L3. Projections are measured at 1 intervals over the full 360 range
with an integration time of 1 s. Ten vertical slices are averaged before applying the deconvolution
algorithm for 4 iterations.

3.4. Data analysis

After aquisition, sinograms are created by the summation of 100 pixel rows. This ensures that the
slice is thick with respect to the spotsize on the detector such that Eq. (16) is valid. Subsequently,
a constant background is removed from the sinograms. After correction for photobleaching with
a characteristic e−1 timescale of 798 seconds, the center pixel row in the sinograms is aligned
with the center of rotation. Reconstruction of tomographic images is performed from all recorded
projections using the MATLAB function iradon.

After reconstruction, the fluorescent beads are manually identified in the tomographic images.
All visible beads are included in the analysis, except beads on the agarose-water interface as
there might be clustering and refraction effects at the boundaries. A 0.31 × 0.31 mm region of
interest (ROI) is selected for each bead and fitted with the elliptical Gaussian of Eq. (21) using
the MATLAB function fit.

3.5. Image deconvolution

The position-dependent PSF of the OPT system is used to deblur the reconstructed images. After
standard reconstruction with an inverse Radon transformation the image is transformed into
cylindrical coordinates (r, θ), which ensures a space-invariant PSF in the r direction. The PSF in
the θ direction only changes with r . After subsequent 1D deconvolutions in the θ and r directions
the image is transformed back into Cartesian coordinates to obtain a deblurred reconstruction
image. The deconvolution is performed using the Lucy-Richardson method for 100 iterations
implemented using the MATLAB function deconvlucy, The coordinate transformations and
image deconvolution combined take several minutes to process on a standard desktop computer.

4. Results

A single slice of an OPT reconstruction of the sample with fluorescent beads is shown in
Fig. 5(a). Several individual beads are visible in the image, showing the characteristic blurring in
the tangential direction, as predicted by Eq. (21). Also the contours of the agarose phantom are
visible due to some fluorescent beads sticking to this boundary. An example of a single-bead
ROI, Fig. 5(b), and the corresponding fitted Gaussian Fig. 5(c) are also shown.

The radial and tangential FWHM of all the selected beads in the reconstructed images are
shown in Fig. 6(a) for both the radial and tangential directions. The measured resolutions are
compared to the theoretical model of Eq. (21) based only on the measured evolution of the
Gaussian beam waist with displacement. The measured FWHM resolution agrees well with the
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Fig. 5. (a) Reconstruced slice of the phantom showing single fluorescent beads. A ROI (b)
around the bead is selected and the fluorescence emission is fitted (c).

theoretically predicted values. The resolution in the radial direction remains constant throughout
the image, while the tangential resolution becomes worse for larger distances from the center of
rotation.
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Fig. 6. (a) Radial (blue) and tangential (red) FWHM resolution as function of the radial dis-
tance from the center of rotation. Theoretical curves (solid lines) are compared to measured
FWHM resolution in radial (open blue squares) and tangential (open red circles) directions.
In most cases the markersize exeeds the errormargin. (b) Radial (open blue squares) and
tangential (open red circles) FWHM resolution after deconvolution. Theoretical curves
plotted for comparison.

Reconstructed images can be enhanced by deconvolution with the spatially-varying PSF of
the OPT system based on our theory. The overall effect of the image deconvolution is shown in
Fig. 6(b), where the radial and tangential FWHM of all the analyzed beads after deconvolution
are plotted as function of their radial distance from the center of rotation. The theoretically
predicted FWHM resolutions without performing deconvolution are plotted for comparison. The
graph shows that the deconvolution algorithm reduces both the radial and tangential resolution
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for most of the beads to below the radial resolution limit.
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Fig. 7. (a) Standard reconstructed slice of the fluorescence phantom. The image of a typical
bead (b) and (f) show significant sharpening after the deconvolution (c) and (g). Radial
(blue) and tangential (red) cross-sections of the initial and deconvoluted images of the bead
are shown in (d) and (h), and (e) and (i) respectively.

Figure 7 shows the deconvolution results for two selected beads in the OPT image. An image of
the beads before deconvolution (Figs. 7(b) and 7(f)) is compared to an image after deconvolution
(Figs. 7(c) and 7(g)). Fluorescence cross sections in radial and tangential direction (Figs. 7(d)
and (h)) are significantly wider in the original image compared to the corresponding cross
sections in the deconvoluted image (Figs. 7(e) and 7(i)).

The deconvolution algorithm is applied to an OPT scan of a GFP labelled zebrafish larvae to
illustrate the performance on a biological sample. Figure 8 shows the resulting reconstruction
of a single slice before and after deconvolution. Figure 8(a) shows a single projection of the
zebrafish. Comparison of Figs. 8(b) and 8(c) shows a clear improvement in image quality is
obtained by application of the spatially-variant deconvolution algorithm.
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Fig. 8. (a) Projection of a zebrafish with a reconstructed slice before (b) and after (c)
deconvolution. The reconstruction corresponds to the vertical position indicated by the white
line in (a). The inset compares the intensity profiles allong the indicated lines.

5. Discussion

In this paper, we have presented a theoretical model that describes the spatially-variant resolution
of optical tomography systems. The theoretical model relates the size of the PSF in the recon-
structed tomographic image to the PSF of the imaging optics. In the derivation of the model we
have assumed that the reconstructed slice is thick with respect to the spotsize of a point emitter
on the detector. This approximation reduces the model to 2D and neglects any 3D imaging
effects. If the slice is thin then the factor A(θ) in Eq. (15) should be taken into account. An
analytical expression of this effect proved to be difficult to calculate analytically. Consequently,
taking 3D effects into account leads to complex PSF shapes in the reconstruction domain that are
challenging to deconvolute.

The theoretical model described in this paper assumes that the PSF of the imaging optics can
be described by a Gaussian beam. Although the PSF of a typical lens system is not necessarily a
Gaussian beam, for the lens system used in our experiments this was a good approximation. A fit
of the measured PSF with a Gaussian beam-shape had a value of R-squared of R2 = 0.9962.

The measured resolution in both radial and tangential directions agrees well with the theoretical
model. We attribute the spread in the measured dimensions of the spots to small imperfections
in the alignment of the sample and the axis of rotation. The summation of 100 rows in the
z-direction does not guaranty the absence of 3D effects as some beads will be close to edges of a
section. This influences the resolution as well as reducing the validity of the fit-function, causing
variations from the predicted resolution.

Knowledge on the spatially-variant resolution in an optical tomography setup allows for
specific guidelines for the design of such systems if certain resolution targets are to be achieved.
Our model describes how the trade-off between resolution and depth of focus of the imaging
optics can be optimally balanced for a certain sample size. A possible design criterion might be
to minimize the worst resolution in the entire reconstructed image. Since the radial resolution
is constant, this amounts to limiting the tangential resolution at the largest distance from the
center of rotation. Figure 9 shows the FWHM tangential resolution as a function of the in-focus
Gaussian beam waist w0 for several distances from the center of rotation. At a particular radial
distance r a small beam waist results in a large Gaussian beam divergence, giving rise to a
poor tangential resolution. As the beam waist increases the beam divergence decreases and the
resolution improves. At large w0 the resolution becomes poor due to the increased beam waist w0
in-focus. From this result it can be seen that one can sacrifice resolution in the center to improve
resolution at the edges of the image. There is clearly an optimal beam waist w0,opt for each
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Fig. 9. Tangential FWHM resolution as function of the beam waist, plotted for several
distances from the rotation center.

distance from the center, given by

w0,opt =

√
λr
π
. (22)

The optimal beam waist w0,opt represents the in-focus beam waist for which the tangential
resolution at the edges of the object is minimal.

The theoretically derived PSF in the reconstructed images allows for image de-blurring. The
Lucy-Richardson deconvolution algorithm applied in this work provides a possible implementa-
tion of such a method. It shows that significant improvement can be obtained in image resolution,
although the resolution improvement comes at the cost of some increased noise and enhancement
of artefacts in the image. We observed that the number of iterations in the deconvolution has
a large effect on this trade-off. The use of 100 iterations in this paper was motivated by the
increase in resolution mainly. Using fewer iterations degrades the final resolution, but also shows
a smaller increase in noise and artefacts. The deconvolution results shown here are a proof of
concept, further optimization of our implementation is the topic of current research.

While our model is derived for a Gaussian-beam shaped PSF of the imaging optics with the
rotation axes in the focal plane, it can be extended to other beam shapes and focus arrangements
with relative ease. Some authors position the focal plane between the center of rotation and the
edge of the sample [3]. In addition, other imaging beams can be implemented using the proposed
theoretical framework. The depth-of-field of the imaging optics can be extended by implementing
a Bessel-beam shaped focus. The resolution in the tomographic reconstructed image obtained by
these methods can be modelled and compared in a similar manner as described in this paper.

In a broader scope, the presented model can be useful in other fields that apply tomographic
imaging techniques such as terahertz tomography, tomographic phase microscopy, electron
microscopy, and PET/SPECT imaging.

6. Conclusion

We have presented and validated an analysis of the image resolution in optical tomography
systems. The model describes the spatially-variant PSF in the reconstructed images as a function
of the properties of the imaging optics. The presented model provides users with a description of
the system resolution, provides guidelines for system design, and can be used for image restora-
tion using deconvolution algorithms. The model can be easily adapted for various tomography
applications.
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