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We present sub-millimeter full-field depth from focus digital holography of surface topography of rough objects.
For each pixel, the depth of the object is calculated from the variance of the intensity image over a set of
reconstruction distances. First, we theoretically describe the axial resolution of this method and show that
sub-millimeter resolution is feasible. Second, using a digital holography setup without magnifying optics or lat-
eral scanning we experimentally demonstrate 100 μm axial resolution depth ranging and surface topography
imaging. This is significantly better than what has previously been reported using digital holography and could
make this technique useful for rapid large-area characterization of surface topography of objects. © 2017 Optical

Society of America
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1. INTRODUCTION

Surface metrology and absolute distance measurement are
essential in many applications; for example, in the field of
geosciences, remote sensing aims to reconstruct the surface top-
ology and track changes of the Earth surface over time. On a
much smaller scale, optical measurement of surface topography
has become vital in many process and quality control methods
[1]. A number of established optical surface imaging techniques
are available, such as phase shifting interferometry (PSI), white
light interferometry (WLI), optical coherence tomography
(OCT), digital holographic microscopy (DHM), and focus
variation microscopy (FVM). In PSI a controlled phase shift
is applied to the reference wave while acquiring the full-field
interference pattern. From a series of images, acquired at differ-
ent phase shifts, the phase can be calculated with 2π ambiguity.
Since phase unwrapping is necessary, PSI is problematic with
phase discontinuities greater than 2π [2]. WLI is based on the
interference signal of a low-coherence (white light) source. The
interference between the reference field and object wave field
imaged with a lens onto the camera changes as a function of the
distance of the scanning reference mirror. The technique can
acquire surface topography in full-field at sub-nanometer axial
resolution. Furthermore, in contrast to PSI [3], it can be ap-
plied to surfaces that are complex in terms of roughness and
discontinuities, but has a long acquisition time due to the
requirement of axial scanning. Time-domain OCT is similar
to WLI but instead of only measuring surface topography,
it is used to image the inside of turbid media, such as retinal
tissue or skin. Time-domain OCT is based on lateral scanning
and the use of a focusing lens to suppress scattered light while

measuring deep in tissue. In Fourier-domain OCT an axial
depth scan is calculated with a Fourier transform of an acquired
interference spectrum, and as such does not require axial
scanning, but is not full-field and therefore lateral scanning
is necessary. Meter-scale OCT depth ranging with 15 μm axial
resolution has recently been achieved [4]. DHM is a technique
that does not use scanning because it reconstructs the complete
wave field. The acquisition time is therefore short compared to
other techniques while having the possibility to attain sub-
nanometer axial resolution. When the reconstructed wave field
is in focus, the phase of the wave field is linear to the height of
the sample. The reconstructed phase is defined modulo 2π and
therefore the height that can be reconstructed in reflection
mode without ambiguity is half a wavelength [5]. This can
be overcome using phase unwrapping; however, this does
not work if abrupt steps greater than half a wavelength are
present. Furthermore, for rough objects the wavefront becomes
too disturbed to calculate the topography. Localization of rough
objects with digital holography has also been demonstrated
using a statistical fringe processing technique [6]. In this
technique, the object is illuminated from two angles, a digital
hologram is captured for each angle, and the two wavefronts are
reconstructed at a number of reconstruction distances near the
object plane. At each reconstruction plane, a statistical algo-
rithm is applied to the phase difference map for object locali-
zation up to a precision of 250 μm. FVM on the other hand is
not an interferometric technique. It uses axial focus scanning
and exploits the limited depth of focus of the objective lens to
extract topology information from focus variation quantified
with a focus metric, provided the surface is optically rough [7].
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The axial precision of this technique depends on the
magnification used; 2.5 × and 100 × magnifications, for exam-
ple, lead to micrometer and nanometer range precision, respec-
tively [8]. Just like in WLI, the acquisition time is relatively
long due to the requirement of axial scanning. For any of these
techniques there exists trade-offs between acquisition time,
sample properties (e.g., roughness and discontinuities), the
presence of scanning, depth range, and axial resolution.
Depth from focus digital holography (DFF-DH) attempts to
combine the short acquisition time of digital holography (scan-
less imaging) with the ability to reconstruct topographies with
large discontinuities or rough surfaces. In contrast to ordinary
imaging where the focus is varied by changing the position of
the lens, in DH the in-focus image can be calculated at any
depth plane. The DFF-DH method is an image processing ap-
proach that estimates the surface location from the optimum of
a focus metric calculated from the digitally reconstructed
image. For 3D objects the image plane depends on the distance
of every part of the object to the camera. By reconstructing the
image of the object at different depths, the degree of focus of a
particular region in the image reconstruction (calculated with a
focus metric) encodes the depth of the object [9]. Because one
can reconstruct the complete wave field at any depth from a
single digitally captured hologram, this method does not need
lateral or axial scanning and has no fundamental limit regarding
the depth range that can be measured other than the coherence
length of the light source. DFF was first used within the context
of digital holography by Ma et al. (2004) [10], who recovered
object depth for every part of the object in this way from a
digital hologram. A similar approach was also used for extended
focus imaging by McElhinney et al. (2008) [11]. While Tachiki
et al. (2008) measured an axial accuracy of a centimeter [9], the
theoretical understanding of the axial resolution and its funda-
mental limits remains largely unknown. In this paper we show
how the depth resolution of DFF-DH depends on sample
properties and on experimental setup parameters. Furthermore,
we show experimentally that the precision in the axial direction
can be brought down to the 100 μm range in a basic DH setup
without any magnification. In the next section, we first give an
overview of the basic principles of DFF-DH and a theoretical
framework to analyze the precision. Subsequently, we compare
our framework with simulations where we show that sub-
millimeter resolution is possible. In the results section we ex-
perimentally demonstrate sub-millimeter axial in DFF-DH.

2. THEORY

A. Depth from Focus Digital Holography
In digital holography the image is numerically calculated from
an interferogram, instead of it being formed optically with a
lens. For an explanation of the basic principles of digital holog-
raphy, we refer the reader to Schnars and Jueptner (2005) [12].
Digital holography suffers from a limited depth of field just like
most other imaging systems. If the reference wave R�x; y� is a
plane wave, as we will assume throughout this paper, then the
reconstruction distance zr equals the recording distance z0 and
the reconstructed image appears in focus [13]. Reconstructing
the image at other distances than z0 leads to defocus blurring
of the image due to the limited depth of field. The degree of

focus in the image depends on the reconstruction distance and
therefore encodes the distance of the object to the sensor. Since
the degree of focus is at its maximum when zr � z0, one needs
to quantify the degree of focus with a focus metric and find the
optimum value as a function of the reconstruction distance. For
each pixel in the object image we can repeat this process and
calculate its distance to the sensor plane z0 to obtain a height
map of the object. The degree of focus in the image as a func-
tion of reconstruction distance zr depends on the numerical
aperture (NA) of the imaging system. In DH, the NA is
inversely proportional to the recording distance and propor-
tional to the dimensions of the sensor.

B. Focus Metric Definition
The degree of focus is quantified using image-based metrics.
These metrics are calculated from the image and have their
maximum when the image is in focus, and decrease rapidly
when the image is out of focus. Different focus metrics exist,
see for example Tian et al. (2007) for an overview [14]. Image
variance is a focus metric that is simple to calculate, and has
been proven to be a good depth measure [15]. The variance
of a digital image I of n × m pixels is given by

var�I� � 1

nm

Xn
i�1

Xm
j�1

�I�i; j� − Ī�2; (1)

where Ī is the mean intensity of the image. In order to derive an
analytic model for the variance as a function of reconstruction
distance, we will use a continuous form, which is given by

var�I� �
ZZ

�I�x; y� − μ�2dxdy; (2)

where μ is the mean of the image and is given by

μ �
ZZ

I�x; y�dxdy: (3)

C. Depth from Focus Precision Analysis
To obtain a theoretical description, we neglect the details
of surface scattering processes, following the assumption of
Nikolaev et al. (2016) in their linear theory approach to
FVM [7], and consider the object surface to be a perfect plane
with a reflection coefficient that has a random distribution. The
object will be considered to have a reflection coefficient that has
a “white” frequency distribution, i.e., all spatial frequencies
have equal power. Due to the linearity of the digital holographic
imaging process with respect to the object field, the recon-
structed object field is described by propagation of every spatial
frequency of the object into the image space. For each spatial
frequency in the object, the focus curve is periodic due to the
Talbot effect, and we will term such a focus curve a Talbot
curve. In our specific case, it turns out that the focus curve
for the object is a sum of the individual Talbot curves for
all spatial frequencies. In order to keep the expressions concise
we consider a one-dimensional input, although a generalization
to two dimensions is straightforward. We first derive an expres-
sion for the image of a reflecting planar object with a single
spatial frequency and random phase at recording distance z0
as input to the holographic imaging system, which we recon-
struct at reconstruction distance zr . Neglecting the finite extent
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of the aperture, we consider an object described by the field
reflection:

tn �
1

2
�1� m cos�2πnξ∕L� � ϕn�; (4)

where ϕn is a random phase term, n∕L is the spatial frequency,
m is an amplitude factor, and ξ is the lateral spatial coordinate
in the input plane. In principle n can be any number, although
in practice it is an integer value due to discrete sampling of the
detector. The reconstructed holographic wave field is calculated
by propagating the input wave field to the hologram plane, and
then to the reconstruction plane, using the transfer function
Fresnel diffraction method approach according to the treatment
of Goodman (1996) [16]. The resulting reconstructed wave
field is

Un�ξ; zr� �
2� 2me−

iπλn2�z0�zr �
L2 cos�

4N
: (5)

The intensity of the reconstructed wavefront is then

In�ξ; zr� �
1

4N 2

�
m cos

�
2πnξ
L

� ϕn

�

� 2 cos

�
πλn2�z0 � zr�

L2

��

× m cos

�
2πnξ
L

� ϕn

�
� 1

4N 2 : (6)

This reduces to jtnj2 for reconstruction distances

zr � −z0 �
2L2k
λ

; (7)

which means that the input grating is replicated at fixed distan-
ces for an integer value of k, also called “self-imaging.” This
occurs for periodic inputs in general and is a manifestation of
the Talbot effect [16] appearing in holographic reconstruction.
The variance for one spatial frequency as a function of
reconstruction distance is subsequently found by calculating
the integral in one dimension [Eq. (2)] over the integration
range 0 to L, which yields

varn�zr� � a� b cos

�
2πλn2�z0 � zr�

L2

�
; (8)

where m is assumed to be equal to one, and

a � 9L�2L2 − 4L� 3�
128N 4

; (9)

and

b � L
16N 4

: (10)

For every spatial frequency n∕L the variance is thus periodic
as a function of reconstruction distance zr . For this reason we
will refer to such a curve as a Talbot curve. We now assume that
the object is composed of many spatial frequencies. Since in an
experimental setting the spatial frequencies are discretely
sampled, we describe the reflection of the object as

tN � 1

N

XN
n�1

1

2
�1� m cos�2πnξ∕L� � ϕn�: (11)

According to the superposition principle, the reconstructed
field intensity is

IN �ξ; zr� �
����XN
n�1

Un�ξ; zr�
����
2

; (12)

�
XN
n�1

jUnj2 �
XN
n�1

XN
m�1

UnU �
m�1 − δn;m�: (13)

Due to the random phase term ϕn, the first term in Eq. (13)
and the last term are independent random variables. Using the
property that var�a� b� � var�a� � var�b� if a and b are
independent random variables, we can write the variance of
the reconstructed field intensity as

var�IN � �
XN
n�1

var�jUnj2� � var

 XN
n�1

XN
m�1

UnU �
m�1 − δn;m�

!
:

(14)

In the appendix we show that this expression reduces to a
linear sum of Talbot curves [see Eq. (8)]:

varN �zr� � A� B
XN
n�1

cos

�
2πλn2�z0 � zr�

L2

�
; (15)

with A and B constants. Equation (15) provides a physical
understanding of the width of the focus curve. The sum of co-
sines gives rise to a peak at zr � −z0, the virtual image plane.
For larger N , either because of a larger numerical aperture or a
larger number of contributing spatial frequencies in the input,
the peak width becomes smaller. The result in Eq. (15) gives a
limit for the precision that can be achieved by depth from focus
digital holography in terms of the peak width. In Fig. 1, the
focus curve of Eq. (15), for z0 � 70.9 mm (real image),
λ � 633 nm, L � 6.7 mm, and N � 1024 is plotted as a
function of reconstruction distance zr . In the preceding analysis
it has been assumed that the object has an ideal flat power
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Fig. 1. Comparison between the focus (variance) curves resulting
from the Fresnel diffraction simulation (blue) and the analytic model
Eq. (15) (red). The difference between the two calculations is due to
the finite aperture used in the simulation.
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spectrum, and the phases ϕn for spatial frequencies n∕L were
assumed to be statistically independent (ideal white noise
input). For a real object the spatial frequency distribution of
the object may be less ideal leading to fewer terms contributing
to the summation in Eq. (15) and therefore resulting in a wider
peak. Finally, the summation is limited by the numerical
aperture and sampling of the imaging system. The numerical
aperture of the system limits the highest spatial frequency to
reach the sensor, while the pixel pitch of the sensor limits
the highest spatial frequency that can be sampled properly.
At the critical recording distance, the maximum amount of spa-
tial frequencies is imaged without aliasing. This distance is
given by zcrit � N pixΔξ2∕λ, whereN pix is the number of sensor
pixels, Δξ is the pixel pitch, and λ is the recording wavelength.
For an amplitude grating with spatial frequency n∕L, the angle
under which the first diffraction order propagates from the
normal is

sin�θ� � λn
L
: (16)

The numerical aperture is determined by the sensor dimen-
sionN pixΔξ and recording distance z0 and limits the maximum
diffraction angle θmax that can be imaged by the system, accord-
ing to

θmax � tan−1
�
N pixΔξ
2z0

�
; (17)

which follows from the imaging geometry.
Combining the last two equations and solving for the maxi-

mum spatial frequency n∕L � Nmax∕L, we find that

Nmax

L
� sin

�
tan−1

�
N pixΔξ
2z0

��
1

λ
: (18)

Using the critical sampling distance z0 � zcrit this becomes

Nmax

L
� 1

2Δξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2

4Δξ2 � 1
q ≈

1

2Δξ
: (19)

Hence, the summation in Eq. (15) is limited to the term
with the maximum spatial frequency Nmax∕L that is imaged
with the system. At the critical sampling distance, this is equal
to the Nyquist frequency and in the summation of Eq. (15)
limits the DFF-DH minimum peak width.

3. DIGITAL HOLOGRAPHY SIMULATIONS

We validate the analytic focus curve model of Eq. (15) as a sum
of Talbot curves by comparing it to the well-known method of
Fresnel diffraction calculations, namely the transfer function
method. We implemented the transfer function methodcode
in MATLAB 2016; we refer the reader to the work of Voelz
(2011) [17] for more information. The input image in the sim-
ulation is given by Eq. (11), where the input object support L is
200 pixels, the number of pixels in the recording plane is
N � 1000, the number of unique spatial frequencies in the
input image is L∕2 − 1, the wavelength is λ � 633 nm, the
pixel size is Δξ � 6.45 μm, and the recording distance z0 at
NΔξ2∕λ (critical recording distance). These are parameters
used in a typical experimental DH realization.

The digital hologram is calculated and the real image is
reconstructed in 400 steps over the distance z0 − 2 mm to
z0 � 2 mm. The variance of the reconstructed image is calcu-
lated at each step. The variance as a function of reconstruction
distance is shown in Fig. 1.

Since there is amplitude scaling in the diffraction calculation
that is not present in the analytic model, the simulated focus
curve is scaled along the vertical axis to match the peak variance
of the analytic model. The simulated focus curve describes the
analytic model of Eq. (15) well around the center zr � z0, and
deviates toward the edges due to finite aperture effects that
occur in the simulation, but are not accounted for in the
analytic model. Both approaches lead to the same focus curve
peak width of approximately 450 μm, indicating the possibility
of sub-millimeter axial resolution with DFF-DH without
magnification.

4. MATERIALS AND METHODS

A. Digital Holography Setup
The digital holography setup is shown in Fig. 2 and consists of a
Michelson interferometer with the light illuminating the object
normal to the surface. The light source is a HeNe laser with a
wavelength of 633 nm and an output power of the order of
3 mW. Two lenses (Thorlabs, LD2568 and LA1979) are used
to expand and collimate the illuminating laser beam respec-
tively to a width (FWHM) of approximately 15 mm; besides
that no lenses or objectives are used in the imaging process. A
shearing interferometer (Thorlabs, SI254) is used to assure
proper collimation of the reference beam, so that the distance
in reconstruction (virtual) space equals the physical recording
distance. The object is placed approximately 70 mm away from
the sensor plane. The mirror in the reference arm is mounted
onto a piezoelectric transducer controlled by a computer for
phase-shifting the digital hologram, where we capture four
holograms with a phase shift of π∕2 of the reference beam be-
tween each subsequent hologram. From a linear combination
of these holograms a complex hologram is formed where the
zeroth and out-of-focus conjugate order are removed [18].
In this way we can use the full image plane and maximize

Fig. 2. Michelson interferometer setup for acquiring the digital
holograms. S, HeNe laser (633 nm); BS, pellicle beam-splitter; C,
CCD camera (1344 × 1024 pixels); M, piezo mounted mirror; O,
object; L, lens; ND, variable neutral density filter.
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the lateral resolution in the reconstructed image. We use a
pellicle beam splitter (Thorlabs, BP233) in order to avoid ghost
images in the reconstructions (that resulted in degraded recon-
structions in earlier research on DFF-DH [9]). Due to the sen-
sitivity of the pellicle beam splitter membrane to vibrations
from sound or airflow, the setup is enclosed in a box in order
to minimize movement of the membrane. A variable neutral
density filter is placed between the beam splitter and the piezo
mounted mirror and right after the laser aperture in order to
control saturation of the camera and the ratio of the intensity
between the reference and the object beam, which is close to 1.
The digital holograms are captured by a CCD camera (ORCA
ER, Hamamatsu) with 1344 × 1024 square pixels with a pixel
size of 6.45 μm and acquisition speed of approximately 10
frames a second.

B. Sample Preparation and Characterization
We use a brass reflector with four different step heights
(squares) separated at heights approximately 200 μm apart
as a test target to demonstrate sub-millimeter axial resolution.
The sample surface is made a rough surface by briefly sandblast-
ing the object. The total area of the square sample is 25 mm2.
For a reference measurement of the surface height topology we
use a white-light interferometer (WLI, Bruker ContourGT-K).
We used the smallest magnification available on the WLI,
which was 2.5 × . Due to the field of view (2 mm) being sig-
nificantly smaller than the lateral sample dimensions (5 mm),
stitching is necessary which is done automatically with the
accompanied Vision software. Tilt is corrected for by fitting
a plane to one of the four surfaces and correcting the entire
profile for this tilt. The acquisition time for the full surface
at the lowest magnification is of the order of 30 min. The
roughness parameters Sa (average roughness) and Sq (root
mean square roughness) are measured with the WLI for the
sample and are given by 3.6 and 11.6 μm, respectively.

C. Digital Holographic Reconstruction
Even though the lateral sample dimensions are smaller than the
sensor and thus the transfer function approach can be used,
there is the possibility of the sample holder, which extends
to beyond the sensor plane, appearing in the reconstructed
image. For this reason reconstruction of the digital holograms
was performed using the single fast Fourier transform (S-FFT)
method [19] since this does not restrict the reconstruction
plane to the dimensions of the sensor. Since noise appears as
high-frequency information in the reconstructed images, we
apply a spatial Gaussian filter to each reconstructed image.
We found that a standard deviation σ of approximately 0.7 pix-
els gave the most accurate reconstructions. We calculate the
focus metric per pixel for each reconstruction distance by taking
a window of N by N pixels around the center pixel. A trade-off
exists in DFF-DH between the axial resolution and the window
size and thus the lateral resolution [9]. We used a window size
of 61 by 61 pixels (0.2 mm2) and calculated the variance of the
windowed image over reconstruction distances zr � z0−2 mm
to z0�2 mm. The reconstruction distance where the variance
peaks for a particular pixel is our estimate for the distance from
the recording plane to the object pixel. Finally, we corrected for
surface tilt of the entire object with respect to the recording

plane by fitting a plane to two diagonally opposite surfaces
and calculating the average tilt. This tilt is subtracted from
the actual distances. The time for the algorithm to calculate
a complete depth image on a quad core computer is around
half a minute.

5. RESULTS

Figures 3(a) and 3(b) show the reconstructed DH intensity im-
ages at reconstruction distances zr � 69.8 and zr � 70.4 mm,
respectively. At zr � 69.8 mm, the lower right quadrant is in
focus and shows the fine details of the surface, whereas the
upper left quadrant has a blurred appearance because it is
out of focus. At zr � 70.4 mm the opposite occurs. Figure 4
shows focus metric curves obtained from the experimental data
at the locations indicated in Fig. 3. Based on the optimum of
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Fig. 3. Reconstructed intensity image of the brass reflector object at
(a) zr � 69.8 and (b) z1r � 70.4 mm. For (a) the lower right square is
in focus, for (b) the upper left square is in focus.
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the focus curves, the surface is reconstructed as shown in Fig. 5.
The experimental focus curve has a full width at half-maximum
of approximately 750 μm, which is significantly broader than
the width of the simulated curve in Fig. 1. We attribute this to
the fact that the frequency content of the object is limited and
the object plane was slightly tilted with respect to the sensor
plane. In that sense, the focus curve in Fig. 1 represents a limit-
ing case with perfect parallel orientation and uniform spatial
frequency power spectrum in the input image. The spatial fre-
quency content of the experimental input is estimated by taking
the Fourier transform of the optimal in focus intensity image.
The logarithm of the power spectrum in Fig. 6 shows that
indeed the power spectrum is not flat, but instead shows a
significant drop off in power for high spatial frequencies.

To obtain an estimate of the accuracy of our approach
we determined the distribution of reconstructed depth values
for all pixels in the image. The result is shown in Fig. 7 as a
histogram together with a comparison of the distribution
obtained with the white-light interferometer. Good agreement
is obtained with the DFF-DH method shown here. Assuming
that the WLI data represents the actual height distribution of
the object we estimate that from the width of the DFF-DH
histogram our method has a depth resolution of approximately
100 μm.

6. DISCUSSION

We presented sub-millimeter DFF-DH imaging of surface
topography without the use of magnifying or lateral scanning
optics. In the theoretical analysis presented in this paper it is
assumed that all spatial frequencies in the object surface are
equally present with randomly distributed phases. This results
in a lower limit of the depth resolution of DFF-DH systems in
terms of the peak width of the focus curve.

The focus curves obtained from the experimental data do
not show the oscillating behavior in the sidelobes of the curve.
Moreover, the experimental focus curve was significantly
broader than the theoretical limit. Both effects are likely caused
by the fact that the object plane was not perfectly parallel to the
camera, but instead is slightly tilted, and the spatial frequency
spectrum of the object does not correspond to a white noise
signal.

On the other hand, the optimal depth is determined from
the maximum value of the peak, which is much better defined
than the peak width. Since the DFF-DH method in this paper
relies only on finding the maximum, this partially compensates
for the broadening of the focus curve in the experiment; the
measured width is approximately 750 μm, while the DFF
depth resolution is around 100 μm. As a result the surface

Fig. 5. (a) Reconstructed DFF-DH depth map of the brass reflector
object and (b) top view.
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height estimation precision is significantly below the width of
the focus curves. Although using the maximum value of the
focus metric to estimate the surface position has a physical ba-
sis, it does not utilize other information of the focus curve, such
as the peak width and shape, to improve the depth estimate.
Fitting a polynomial or point spread function curve, as applied
in FVM [8], could further improve the axial resolution.

While this paper mainly was dedicated to analyzing the
axial resolution of DFF-DH, lateral resolution also plays an
important role in applications. DFF-DH is based on an area
of pixels to calculate the focus metric at the center pixel, thus
smoothing the depth map in the transversal direction. In prin-
ciple there is a relation between the number of pixels needed
for obtaining a depth estimate and the axial precision, thereby
resulting in an intrinsic trade-off between axial and lateral
resolution. We observed that a window size of 61 pixels gave
good results. Using more sophisticated methods, mentioned
earlier to estimate the depth, will likely enable the use of
smaller window sizes.

In our configuration, four digital holograms were acquired
for phase shifting digital holography. This was to make full use
of the image plane; however, this is not a strict requirement. A
setup with a larger sensor can produce equivalent results from a
single hologram capture if the reconstructed diffraction orders
are properly separated spatially in the reconstruction plane.

The results in this work were obtained with a basic form
of DFF-DH, without using additional magnifying optics.
Magnifying optics can be incorporated into the DFF-DH sys-
tem in order to improve lateral and axial resolution, which goes
at the expense of the field of view. Since in digital holography
lateral resolution depends also on the aperture of the sensor and
indirectly on the pixel size, resolution in DFF-DH also can be
improved without magnifying optics by using a larger sensor
while retaining the field of view. We envision this technique
can be useful for characterizing objects in art, process control
and computer vision, or in general when absolute distance mea-
surements are needed in a very short acquisition time.

7. CONCLUSIONS

We demonstrated that the DFF curve as a function of
reconstruction depth can be approximated by the sum of
Talbot curves for every spatial frequency. Analytic theory
and numerical simulation indicated that the axial precision
in terms of the peak width can be brought down to well below
the millimeter range using a basic digital holography setup
without scanning, imaging optics, or magnification. Sub-
millimeter depth resolution was experimentally demonstrated
in a DFF-DH setup using a rough reflecting step-profile where
our method was able to discriminate between layers that were
approximately 200 μm apart. This is approximately 100 times
better than what was previously demonstrated in DFF-DH [9].

APPENDIX A

In this appendix we show that the focus curve of a white noise
input to the DH imaging system is given by the sum of Talbot
curves [see Eq. (8)] for all spatial frequencies.

Using Eq. (8), the first term of Eq. (13) can be written as

XN
n�1

var�jUnj2� � Na� b
XN
n�1

cos

�
2πλn2�z0 � zr�

L2

�
: (A1)

Using Eq. (5), the second term of equation Eq. (13) can be
rewritten as
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Using the independence property for the variance, we obtain
for the variance of this expression
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The first term is equal to

var � L
32 N 4

XN
n�1

XN
m�1

cos

�
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L2

�
� 1:
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The last term is equal to

var � L�N − 1�2
16 N 4

XN
n�1

�
cos

�
2πλn2�z0 � z1�

L2

�
� 1

�
: (A5)

From an analogy with Fourier analysis we can observe that
the peak width of σ2�IN � is limited by the higher spatial
frequencies caused by the n2 terms in the argument of the
cosine, and not by the difference terms n2 − m2, which corre-
spond to lower spatial frequencies. We thus approximate the
variance curve as a linear sum of the Talbot curves resulting
from the n2∕L2 frequencies in the variance curve:

varN �zr� � A�
XN
n�1

B cos

�
2πλn2�z0 � zr�

L2

�
; (A6)
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where

A � N
�
a� L�N − 1�2 � L

16N 4

�
(A7)

and

B � L�N − 1�2 � L
16N 4

: (A8)
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