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We present a comparison of image reconstruction techniques for optical projection tomography. We compare
conventional filtered back projection, sinogram filtering using the frequency–distance relationship (FDR), image
deconvolution, and 2D point-spread-function-based iterative reconstruction. The latter three methods aim to
remove the spatial blurring in the reconstructed image originating from the limited depth of field caused by
the point spread function of the imaging system. The methods are compared based on simulated data, exper-
imental optical projection tomography data of single fluorescent beads, and high-resolution optical projection
tomography imaging of an entire zebrafish larva. We demonstrate that the FDR method performs poorly on data
acquired with high numerical aperture optical imaging systems. We show that the deconvolution technique per-
forms best on highly sparse data with low signal-to-noise ratio. The point-spread-function-based reconstruction
method is superior for nonsparse objects and data of high signal-to-noise ratio. © 2018 Optical Society of America

OCIS codes: (100.3010) Image reconstruction techniques; (100.3190) Inverse problems; (100.6950) Tomographic image

processing.

https://doi.org/10.1364/AO.57.001874

1. INTRODUCTION

For the study of biological samples and small animals, such as
zebrafish or (mouse) embryos, optical tomographic imaging tech-
niques, such as optical diffraction tomography [1] and optical
projection tomography (OPT) [2], are among the standard im-
aging modalities. From these samples, projections of transmitted
or emitted (fluorescence) light are recorded. From these projec-
tions, an image of the object is reconstructed using tomographic
reconstruction techniques. In OPT, a lens-based optical imaging
system is used to image the sample onto the detector. The optical
system is characterized by the point spread function (PSF). Due
to light diffraction, instead of collecting light along a straight path
(line) through the object, light from a sample volume, determined
by the shape of the PSF, is collected by the detector. For image
acquisition with high numerical aperture (NA), small depth of
focus lenses, this results in efficient light collection from the focal
plane. However, light from regions far from the focal plane is
inefficiently collected. Standard reconstruction techniques, such
as filtered back projection (FBP), are based on straight ray
approximation, which neglects the effect of light diffraction by
the imaging lens [3]. Consequently, OPT images reconstructed
with FBP can suffer from severe image degradation.

Reconstruction algorithms that include the PSF in the
reconstruction have been developed for clinical tomographic

imaging techniques such as PET [4], SPECT [5], and x-ray
CT [6]. Also, for optical tomographic imaging, various
reconstruction techniques were developed to correct for the ef-
fect of the PSF, as indicated in Fig. 1, where these techniques
are divided in three categories. First, correction for the effect of
the PSF can take place before the reconstruction, either by fil-
tering the sinogram in real space using an iterative deconvolu-
tion [7] or by filtering the sinogram in Fourier space with a
filter based on the frequency–distance relation [8,9]. In both
cases, these methods are directly applied to the measured pro-
jection data, and the processed sinogram is converted to an im-
age using FBP. Second, correction for the effect of the PSF can
take place after reconstruction using deconvolution of the im-
age reconstructed with FBP [10]. Third, we recently demon-
strated correction for the effect of the PSF during the
tomographic reconstruction process itself using iterative
optimization [11].

In this work, we compare three advanced tomographic
reconstruction methods, namely frequency–distance relation-
ship (FDR) followed by FBP [9], FBP followed by image de-
convolution [10], and 2D PSF-based reconstruction [11] that
all correct for the effect of the optical PSF, with the classical
FBP [3]. First, we test all methods on their ability to reduce
tangential blurring in the reconstructed image using simulated
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data. In these simulation experiments, we study the effect of the
signal-to-noise ration (SNR) and numerical aperture on the
reconstruction error. Second, we compare the performance
of all reconstruction algorithms on experimental data. Since
no reference image is available for experimental data, a no-
reference or blind image quality assessment (NR-IQA) is
performed to provide an image quality measure that enables
quantitative comparison of the quality of the different
reconstruction techniques. Finally, we indicate which algorithm
to choose for objects that have different signal-to-noise ratio
and/or are imaged with different numerical apertures.

2. THEORY OF TOMOGRAPHIC IMAGE
RECONSTRUCTION

A. General Problem Formulation
For the imaging geometry of OPT, see Fig. 2(a), light from the
object is imaged from the sample onto the detector using lenses.
As a result, the image of a point source gives a blurred spot on
the detector determined by the PSF h�x; y; z�. In general, the
shape of the 3D PSF can be complicated as it is dependent on
the exact imaging geometry. It can be obtained using Fourier
optics calculations, optical simulations, or experimental mea-
surement. For the case of incoherent imaging of an object
of which its structure varies slowly in the y direction, it was
shown [10,11] that the projections are given by the convolu-
tion of the 2D object f �x; z� by the 2D PSF jh�x; z�j2 as

p�s;θ� �
Z

∞

−∞

Z
jh�x cos θ� z sin θ − s; x sin θ� z cos θ�j2

× f �x; z�dxdz; (1)

where jh�x; z�j2 is the spatially variant incoherent PSF, s the
lateral shift, and θ ∈ �0; 2π� the rotation angle. Equation (1)
shows that the measured intensity on the detector is
given by an integral over the object, which is illustrated in
Fig. 2(b). To facilitate a quantitative comparison of the differ-
ent reconstruction algorithms, we use a 2D Gaussian PSF that
is described by

jh�x; z�j2 �
������

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � zzR�2

q exp

 
−

x2

w2
0

�
1� � zzR�2�

!������
2

; (2)

where zR � πw2
0∕λ is the Rayleigh range, w0 the Gaussian

beam waist, and λ the wavelength. For a Gaussian PSF, both
the FDR filter and the image deconvolution filter [10] can be
analytically calculated. This enables a quantitative comparison.
However, the general results of our comparison hold for
arbitrary beam shapes if correctly implemented in the corre-
sponding reconstruction algorithm.

B. FBP Reconstruction
Due to its fast reconstruction time and the easy concept, FBP
reconstruction is still the most commonly used reconstruction
technique in optical tomography. In FBP, a straight ray geom-
etry is used over which the measured projection is back pro-
jected onto the object. FBP is the correct reconstruction for
the case of an ideal imaging system where the PSF is described
by jh�x; z�j2 � δ�x�. This means that irrespective of the dis-
tance of the object to the collection system, the signal from
all pixels on a line through the object is collected onto a single
detector pixel. For jh�x; z�j2 � δ�x�, Eq. (1) results in the
standard Radon transform [3,12],

p�s; θ� �
Z

∞

−∞

Z
f �x; z�δ�x cos θ� z sin θ − s�dxdz: (3)

In this case, the object can be retrieved by FBP as

f �x; z� �
Z

π

0

Z
∞

−∞
Pθ�f s� exp�i2πf ss�jf sjdf sdθ; (4)

where Pθ�2πf s� is the 1D Fourier transform of the projection
data at angle θ. However, in case the PSF is not ideal, FBP
reconstruction causes artifacts and/or severe blurring in the re-
constructed image. Next, we describe three algorithms that in-
corporate the PSF before (FDR), after (image deconvolution)
or during the image reconstruction (PSF-based reconstruction).

C. FDR Reconstruction
Originating from the field of x-ray CT, reconstruction methods
that take the PSF into account are algorithms based on the
FDR [8,9,13]. FDR has been implemented for reconstructions
of OPT tomograms corrected for the out-of-focus deterioration
of resolution due to the imaging system [8]. In FDR, the blur-
ring of the sinogram in the Fourier domain is described by

Pb�f x; f y� � H �f x ; f y�Po�f x ; f y�; (5)

Fig. 1. Schematic overview of different tomographic reconstruction
methods that correct for the PSF [7,9910–11]. The left-hand side in-
dicates that the reconstruction is performed in real space, and the
right-hand side indicates that it is performed in Fourier space. The
bottom side indicates that the reconstruction is performed in sinogram
space, and the top side indicates that it is performed in image space.
The dashed lines indicate conventional FBP reconstruction.

(a) (b)

Fig. 2. (a) Schematic overview of the optical projection tomography
fluorescence imaging geometry. (b) 2D slice of the object and the
Gaussian beam. The rotation angle is denoted by θ.
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where Pb�f x; f y� is the Fourier transform of the blurred sino-
gram, H �f x ; f y� is the filter based on the PSF describing the
blurring, and Po�f x ; f y� is the Fourier transform of the sino-
gram of the object with spatial frequencies f x and f y. The sys-
tem PSF is used to create an inverse filter H −1�f x; f y� that is
multiplied with the Fourier transform of the sinogram to re-
move the blurring caused by H �f x ; f y� [13,14]. For the
Gaussian PSF in Eq. (5), the filter H �f x ; f y� is given by

H �f x ; f y� �
1�

1� λ2f 2
y

f 2
xπ

2w2
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiw0

λ2f 2y
f 2x

�π2w2
0

r

× exp
�
−
f x

8

�
λ2f 2

y

f 2
xπ

2w0

� f xπw
2
0

		
: (6)

1. Analytical Derivation of the FDR Filter for a Gaussian
PSF
In the following, we derive the analytical inverse filter
H �f x ; f y�−1. Let us assume a point source object located on
the x axis at distance l from the origin defined as

f �x; z� � δ�x − l�δ�z�: (7)

The PSF is defined as in Eq. (2). The blurred sinogram is
then defined as

pb�s;θ��
ZZ

δ�x − l cos θ�δ�z�

× jh�x cos θ� z sin θ − s; x sin θ� z cos θ�j2dxdz:
Integration over x and z, with jh�x; z�j2 described by

Eq. (2), leads to

pb�s; θ� �
1

1� l 2λ2 sin2 θ
π2w2

0

exp

0
B@−

2�s − l cos θ�2

w0

�
1� l 2λ2 sin2 θ

π2w2
0

	
1
CA: (8)

The Fourier transform of the pb�s; θ� [14] is given by

Pb�f x; f y� �
1

2π

Z
2π

0

Z
∞

−∞
pb�s; θ� exp�−j�f xs � f yθ��dsdθ:

(9)

Inserting Eq. (8) in Eq. (9) and integration over s leads to
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1
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An expression for the filter can be derived by assuming a
stationary phase approximation, i.e., the function exp�−jf yθ�
jf x l cos θ� only takes on a nonzero value if the derivative of
this angle with respect to θ is zero, i.e.,

d
dθ

f yθ − f x l cos θ � f y � f xl sin θ � 0; (11)

which is equivalent to l sin θ � −
f y

f x
. Evaluating this in

Eq. (10) gives
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�
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where g � −j�f xl cos θ� f yθ�. From a similar derivation for
an ideal imaging system, which only contains the last term of
Eq. (12) and using Eq. (5), it can be derived that the unblurring
FDR filter is

H −1�f x; f y� �
�
1�

λ2f 2
y

f 2
xπ

2w2
0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� f xπ
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D. Image Deconvolution
A general approach for PSF correction is image deconvolution.
However, in case of tomographic reconstruction, the PSF of the
reconstructed image is a complicated expression of the PSF of
the imaging system with which the projections are measured.
For a Gaussian beam, the 2D PSF of the FBP reconstructed
image is spatially varying with the coordinate x and coordinate
y according to

PSF�x; y� � R−θ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

π2ayax

s
exp

�
−



x2

ax
� y2

ay

�		
: (14)

In Eq. (14) ax � w2
0∕2 and ay � �w2

0 � λ2r20
π2w2

0
�∕2, r0 is the lo-

cation of the PSF in the image domain andR−θ is an operator to
perform a standard coordinate transformation over an angle [10].
FromEq. (14) it can be observed that the resolution in the tangen-
tial direction deteriorates with increasing distance to the rotation
axis,whereastheresolutionintheradialdirectionisconstant.Using
a conversion to polar coordinates, the image can be successively
deconvolved in the radial and angular direction using deconvolu-
tion (e.g., with the Lucy–Richardson algorithm).

E. PSF-Based Reconstruction
An advanced reconstruction method is based on the inclusion
of the imaging system’s PSF into the tomographic
reconstruction [11]. Given the measured projections p and
the effect of imaging system PSF given by Eq. (2) as described
by matrix A, the object f can be reconstructed by solving

argmin
f

1

2
kA · f − pk22; (15)

where k · k22 denotes the Euclidean norm. Equation (15) can be
solved using the least-squares optimization method.

3. METHODS

A. Reconstruction Algorithms
All tomographic reconstructions are performed on a computer
with an Intel(R) Xeon(R) CPU Processor (E5-1620 v3 at
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3.50 GHz), 32 GB installed memory, and a 64-bit operating
system. The data are processed using software written in the
commercial software package MATLAB (Mathworks,
R2016a)(Our code to perform these calculations is available
on request.). The reconstructions with FBP are done with
the MATLAB function iradon. The FDR method is imple-
mented using the analytical expression for the inverse filter
H −1�f x; f y�, derived in Section 2.C.1. After the FDR
reconstruction, intensity thresholding is applied to remove
reconstruction artifacts. The thresholding is done individually
for each dataset. For the simulations, a thresholding of 0.04
(15.7% of the peak value) is used. For the zebrafish dataset,
the threshold is set to 0.1 (2.5% of the peak value).

The deconvolution and the PSF-based method implemen-
tations are identical to the original implementation of the
methods [10,11]. To enable a quantitative comparison of
the reconstructed images, all reconstructed images are scaled
using the scaling described in [11].

B. Image Quality Assessment
For both simulated and experimental data of point objects, the
image quality is determined from the width of the PSF in the
reconstructed image. The full width at half maximum
(FWHM) is obtained from a bivariate Gaussian fit in a region
of interest around the image of isolated single objects with the
width in the two perpendicular dimensions as independent fit
parameters.

Since no reference image is available for experimental data of
spatially extended objects, an NR-IQA is used to compare the
quality of the different reconstruction results. NR-IQA aims to
determine quantitative measures to objectively predict the
quality of an image based only on the image itself [15]. In
our comparison, we use the SNR and the sharpness provided
by NR-IQA to assess the quality of the reconstructed images.

It is assumed that both the image quality increases with in-
creasing SNR and image sharpness. In case of suboptimal per-
formance, both these metrics are lower. The SNR of an image is
defined as

SNR � 20 log

�
μsignal
σnoise

	
; (16)

where μsignal is the average image intensity in a signal mask re-
gion and σnoise is the standard deviation of the image intensity
in a noise region. The latter corresponds to the region outside
the signal mask [16].

First, a signal and a background mask are created for the
image reconstructed with every method. The signal mask com-
prises all pixels whose intensity is higher than the average back-
ground signal plus four times its standard deviation. The
background mask is defined as the area of the image that is
not in the signal mask. Hence, in the background mask the
image intensity is smaller than the average background signal
plus four times its standard deviation. Second, the intersection
of the signal masks and background masks for all four
reconstruction methods are estimated. This final signal mask
is then used to estimate the intersection signal in the image.
The final background mask is used to estimate the standard
deviation of the background, which we use as a measure of
the noise. We use the intersection masks, since no ground truth

of the signal and noise regions is available. Hence, the intersec-
tion masks weigh each method in the same way in the
determination of the SNR.

Following the definition of De and Masilamani [17], the
sharpness in the image is defined in the frequency domain
of the image as the ratio FM according to

FM � T
M · N

; (17)

where T denotes the total number of pixels in the Fourier
transform of the image that have a magnitude larger than
the maximum magnitude divided by 1000. The Fourier-
transformed image is centered so that the zero-frequency
components are represented in the center of the spectrum.
The denominator contains the product of the image size of
M times N in the two dimensions. The use of the metric of
Eq. (17) for image quality assessment is based on the assumption
that a sharper image will have a larger number of high-frequency
components in the frequency domain compared to a blurred im-
age, which has mainly low-frequency components.

C. Tomographic Reconstruction Simulations
Multiple images of size 5 × 5 mm2 (300 by 300 pixels) are
generated with a circular Gaussian-shaped object placed at a
specific distance from the origin in every image. The objects
have an FWHM in the x and y direction of 125 μm. The object
in the first image is located in the center of the image, and the
object in the last image is located horizontally close to the edge
of the image. The Gaussian PSF is implemented for NA �
0.027 and NA � 0.053 and with a beam waist of
w0 � 6 μm. The depth of field (DOF), defined as twice the
Rayleigh length, for NA � 0.027 is DOF � 48 μm and for
NA � 0.053, DOF � 24 μm. The sinogram is blurred with
the Gaussian PSF and then used as input for the different
reconstruction algorithms. After reconstruction, a Gaussian
is fitted to each reconstructed object, and the FWHM of
the object in the radial and tangential direction is determined.
Deconvolution of the FBP-reconstructed image is performed
with the MATLAB function deconvlucy, with the number of
iterations set to 100. The maximum number of iterations of
the PSF-based algorithm for an NA of 0.027 is set to 4000,
and for an NA of 0.053 to 6000. The convergence and optimal
number of iterations is object, NA, and SNR dependent. For
both the deconvolution and PSF-based reconstruction, conver-
gence of the method for the indicated number of iterations is
validated visually. The absolute error of the projections is esti-
mated as jjAf − pjj22, where A denotes the geometry matrix,
f the reconstructed image, and p the projections with
added noise.

4. RESULTS

A. Image Reconstruction Comparison of Simulations
Figure 3 shows the reconstruction as well as the tangential and
radial FWHM of the object located at a varying radial distance
to the center of the image. A sharp image on the detector is
made for radial distance 0, which is the center of rotation.
In Fig. 3(a) the original image and the reconstruction results
using FBP, FDR, image deconvolution, and PSF-based
reconstruction are shown for an NA of 0.027. It is clear that
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the FBP-reconstructed image is severely blurred, especially for
objects far from the center. The FDR method produces side
lobes in the radial and tangential direction and has a lower peak
intensity. Both deconvolution and PSF-based reconstruction
show a clear reduction in tangential blurring compared to
FBP. Figure 3(b) shows the fitted FWHM of the objects for
an NA � 0.027. The optimal resolution of the reconstruction
is determined by the sum of the variance of the PSF and of the
object, subsequently converted to FWHM, which is indicated
for the tangential and radial directions. For the FBP
reconstruction, the width in the tangential direction increases
significantly and follows the theoretical prediction. The FDR

method shows a significantly improved result, albeit slightly
above the fundamental limit for larger distances to the origin.
For small distances to the origin, it is lower than the theoretical
minimum. This difference is within the resolution of the
simulation and attributed to the non-Gaussian shape of the
FDR-reconstructed objects (e.g., the presence of side lobes).
The image deconvolution method and the PSF-based re-
construction technique show an almost full reduction of the
tangential blurring for all radial distances. In the radial direc-
tion, all algorithms achieve diffraction-limited resolution.
A comparison of the PSF in the tangential direction is shown
in Fig. 3(c) for an object at a distance of 2 mm from the center.
In Fig. 3(d), the original image and the reconstruction results
using FBP, FDR, image deconvolution, and PSF-based
reconstruction are shown for NA � 0.053. For this higher
NA, the FBP-reconstructed image shows a stronger burring
than in Fig. 3(a). While deconvolution and PSF-based
reconstruction give good results, the FDR method produces
side lobes in the radial and tangential direction. Figure 3(e)
shows the FWHM of the same objects. The FBP
reconstruction shows an increase of the tangential width, which
is now even larger for the high NA case. It can be observed that
the deconvolution algorithm is able to reduce the tangential
blurring, whereas PSF-based reconstruction performs less than
ideal at large distances from the center. The FDR gives a sig-
nificantly larger FWHM, especially at large radial distances
from the center. A comparison of the PSF in the tangential di-
rection is shown for a distance of 2 mm from the center in
Fig. 3(f ).

The previous simulations are performed for the noise-
free case, i.e., the SNR is infinite. However, the presence of
noise influences the reconstruction result. For iterative methods
such as deconvolution and the PSF-based reconstruction, the
convergence rate and obtained optimal solution depend on
the SNR in the projections. The influence of noise on the
reconstruction is studied for a single circular-cavity object at
a radial distance of 2 mm from the center. Various amounts
of noise are added to the projections. Figure 4 illustrates the
relation between the absolute error of the projections [accord-
ing to Eq. (15)] and the number of iterations for a low (top) and
a high (bottom) NA. For reconstruction methods based on ana-
lytical methods, such as the FBP or FDR, the absolute
reconstruction error is similar for low and high SNR (lines
overlap in Fig. 4). For both NAs, the deconvolution approach,
which takes the FBP as input, gives a lower absolute error
compared to FDR and FBP. Although deconvolution is
iterative, convergence is already reached after the first iteration.
The PSF-based reconstruction has the lowest absolute error
compared to the other methods for both high and low
NA. For a large number of iterations, an amplification of
the reconstruction error can be seen. If not terminated, the
reconstruction error for the PSF-based reconstruction
grows. It may even exceed that of the other methods. We noted
that the number of iterations for which convergence is observed
depends on the object to be reconstructed. Hence, the
optimum number of iterations needs to be determined for
each dataset individually, which is an object-dependent
regularization.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Comparison of the ground truth and the reconstructed im-
age. (a) The original image, and the reconstructions using FBP, FDR,
image deconvolution, and PSF-based reconstruction for a PSF with an
NA � 0.027. (b) Tangential and radial FWHM of the cavities for a
PSF with an NA � 0.027. (c) Cross section of the reconstructions
[shown in (a)] in the tangential direction for a distance of 2 mm from
the center. The solid black line indicates the input object. (d) The
original image, and the reconstructions, using FBP, FDR, image de-
convolution, and PSF-based reconstruction for a PSF with an
NA � 0.053. (e) Tangential and radial FWHM of the cavities for
a PSF with an NA � 0.053. (f ) Cross section of the reconstructions
[shown in (d)] in the tangential direction for a distance of 2 mm from
the center. The solid black line indicates the input object.
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B. Image Quality of Experimental OPT Data
We investigate the reconstruction of single fluorescent bead
emitters embedded in an agarose emulsion measured with
OPT. The experimental setup is described in more detail in
[10], and the main parameters of importance are briefly dis-
cussed. The experimentally determined Gaussian PSF has a
beam waist in focus of w0 � 6 μm, NA � 0.053, and the
measured Gaussian beam shape is used in the PSF-based
reconstruction. A sharp image on the detector is made for radial
distance 0, which is the center of rotation. The field of view of
the experimental data is 5.2 × 5.2 mm2. In the lateral direction,
the detector has 1344 pixels per projection, and 360 projections
are acquired over 360 degrees with one-degree spacing. The
total dataset consists of 1024 sinograms covering a length of
4 mm along the rotation axis. Subsequently, the 1024
sinograms are combined into 32 averaged sinograms. The
preprocessing is described in [11].

Figure 5 shows the reconstructions for a single averaged slice
with the different methods. The tangential and radial blurring

are clearly visible in Figs. 5(a) and 5(b), where the image is
reconstructed with FBP.

For some beads, the FDR reconstruction shows improve-
ment over FBP, as shown in Fig. 5(c). The PSF-based
reconstruction, shown in Fig. 5(e), significantly reduces the
blurring in the radial and tangential blurring direction com-
pared to Fig. 5(b). The greatest improvement is given by
the deconvolution method, shown in Fig. 5(d). Both the radial
and tangential blurring are significantly reduced. The resolu-
tion of the different methods applied to all four beads is
quantitatively represented in Table 1.

We determined the sharpness metric and the SNR for the
transverse slice reconstructed with all four methods. The lowest
sharpness is given by the FBP with a value of 0.05. The PSF-
based reconstruction has a value of 0.0794. The deconvolution
shows a sharpness value of 0.18, and the FDR has a sharpness
value of 0.19. For all methods, the SNR of the beads is quite
similar. The PSF-based method has an SNR of 29.9. The SNR
of the FDR method is 29.2 dB, the FBP of 32.6 dB, and the
deconvolution has the highest SNR with 35.2 dB.

Fig. 4. Reconstruction error for a low NA (top) and a high NA (bot-
tom) optical imaging system for SNR � 40 dB (solid lines) and
SNR � 20 dB (dashed lines). PSF-based reconstruction simulations
are performed for reconstruction at different SNRs (indicated).

(a)

(b) (c) (d) (e)

Fig. 5. Reconstructions using FBP, FDR, deconvolution, and PSF-
based reconstruction for a single averaged sinogram in the x − z plane.
The dash lines indicate the Gaussian fit in radial (red) and tangential
direction (green) of fluorescent beads. (a) FBP image reconstruction.
(b) Zoom in on individual beads in (a). (c) FDR reconstruction.
(d) Image deconvolution. (e) PSF-based reconstruction.
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A second comparison of the reconstruction algorithms is
done using OPT imaging of a 10-day-old transgenic zebrafish
larva to illustrate the performance on a biological sample. The
zebrafish cellular membranes are labeled with green fluorescent
protein. The zebrafish larva is euthanized in ice water at the
Erasmus Medical Center, Rotterdam according to animal wel-
fare regulations. Animal experiments are approved by the
Animal Experimentation Committee of the Erasmus MC,
Rotterdam.

The zebrafish is embedded in agarose and mounted in our
OPT system [10]. The same experimental parameters are used
as for the fluorescent bead data; however, the NA of the system
is 0.027, which is lower than for the fluorescent beads. For the
zebrafish imaging, a total of 1691 sinograms are acquired cover-
ing a distance of 6.5 mm along the rotation axis. For all 1691
slices, the tomographic image is reconstructed using FBP,
FDR, deconvolution, and the PSF-based approach (no slice
averaging). The measured data is preprocessed as described
in [11]. Furthermore, the result of the FDR reconstruction
is masked for visualization purposes by the average mask used
for the SNR estimation.

A qualitative comparison of transversal slices through the
zebrafish belly and tail is shown in Fig. 6 for the four different
reconstruction techniques. Compared to FBP, deconvolution
shows a small improvement in intensity and sharpness. The
FDR has a much higher contrast and shows fewer artifacts
in between the important biological structures. The PSF-based
reconstruction shows the highest intensity and the least arti-
facts. Figures 6(b) and 6(c), show cross sections through parts
of the zebrafish belly and tail from which similar conclusions
can be drawn.

A comparison of a coronal slice of the zebrafish recon-
structed with the different algorithms is shown in Fig. 7
(center). For this slice, a similar conclusion can be drawn as
for the transversal slice. Only visually, deconvolution seems
to perform better than the FDR.

Quantitative comparison of the SNR along the length of the
zebrafish shows, see Fig. 7 (left), that FBP has the lowest SNR.
The deconvolution method and the FDR have almost the same
SNR, and the PSF-based reconstruction has the highest SNR,
which is almost 10 dB better than the other reconstruction
techniques. The sharpness of the image shows a similar

Table 1. FWHM Resolution (μm) in Radial Direction for the FBP, the Analytical FDR, Deconvolution and the PSF-Based
Reconstruction for Four Fluorescent Beadsa

Method Direction

Bead

1 2 3 4

FBP Radial 27.4� 0.3 8.9� 0.1 10.8� 0.1 8.3� 0.1
Tangential 57.1� 0.6 17.3� 0.3 42.6� 0.3 35.4� 0.5

FDR Radial 25.1� 0.4 5.1� 0.1 8.48� 0.5 6.975� 0.1
Tangential 60.9� 1.2 18.2� 0.5 41.5� 0.6 36.8� 0.9

Deconvolution Radial 7.5� 0.1 3.8� 0.1 5.9� 0.1 3.8� 0.1
Tangential 23.3� 0.3 7.7� 0.2 10.2� 0.1 8.4� 0.1

PSF-based Radial 19.1� 0.2 7.2� 0.2 8.5� 0.1 6.4� 0.1
Tangential 33.8� 0.4 10.1� 0.3 25.4� 0.3 24.3� 0.4

aThe errors indicate 95% confidence intervals.

(a) (b)

(c)

Fig. 6. (a) OPT image reconstructions of a single transverse slice of the zebrafish with the four reconstruction techniques, as indicated. (b) Cross
section of the reconstructed intensity in the tangential direction through the zebrafish belly, and (c) cross section in radial direction through the
zebrafish tail.
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behavior, shown in Fig. 7 (right). In general, the FDR and the
FBP have the lowest sharpness value. The sharpness of the
deconvolution method is higher, and the PSF-based
reconstruction approach yields the highest sharpness value.
The jump in SNR and sharpness at slice 580 is due to the tran-
sition between the tail and the main body of the fish, where two
datasets were fused.

5. DISCUSSION

We compare three different state-of-the-art tomographic
reconstruction methods that reduce space-variant tangential
blurring introduced by the optical imaging system with the
classical FBP. We applied the algorithms to simulated data
and experimental data of fluorescent beads and a zebrafish
larva.

The deconvolution and PSF-based method give the best
reconstruction results on simulated point source data.
Especially for high NA imaging systems, they perform better
than FDR. We attribute this to the fact that the FDR inverse
filter is an approximation that is only exact if the OTF of the
imaging system varies slowly over the rotation angle [8]. For
this condition, the stationary phase approximation holds,
and a simple expression for the inverse filter can be derived.
Especially for high NA optical imaging systems, this condition
is not met. Consequently, the derived FDR filter is incorrect.
Furthermore, in case of noisy data, the FDR filter in the Fourier
domain has regions, where a division is performed by values
close to zero. This leads to an amplification of the noise, which
is a common problem in inverse filtering [18]. If further regu-
larization of the FDR is applied, we expect that the
reconstruction result can be improved. Another improvement
can be achieved by additional filtering of the sinogram, for ex-
ample by a Wiener filter, which can reduce noise amplification
of the inverse filter [9]. The PSF-based reconstruction is regu-
larized indirectly by termination of the reconstruction after the
most optimal number of iterations. Hence, it is therefore more
robust to noise than the conventional FDR. Additional regu-
larization of PSF-based reconstruction, such as Tikhonov or

total variation minimization, could lead to less noise amplifi-
cation and faster convergence. In that case, we expect that
the absolute error for the PSF-based approach would remain
constant after reaching the minimum reconstruction error.

The experimental data of the fluorescent beads demonstrates
that the deconvolution algorithm shows the best performance
for sparse and low SNR objects. Since the optimization land-
scape of the PSF-based approach for sparse and low SNR ob-
jects is very flat and noisy, many iterations are necessary to find
a good and improved solution. Consequently, if the SNR
would be higher for the bead data, the PSF-based method
should be able to reduce the blurring to a similar level as de-
convolution in a more useful timeframe, i.e., in fewer iterations.
To enhance the convergence speed for sparse objects, more
prior information can be included in the reconstruction; for
example, an initial guess that is close to the real solution could
lead to better reconstruction results.

For extended and nonsparse objects, such as the zebrafish
larva, the PSF-based algorithm gives the best results, followed
by the deconvolution approach. We attribute the good perfor-
mance of the PSF-based algorithm to the fact that the inten-
sities coming from an entire Gaussian-shaped region are
correctly attributed to the measured projections. Hence, signal
inconsistencies with the FBP reconstruction are removed, re-
sulting in higher peak signals and a lower (noisy) background.
Since for nonsparse objects the total object signal is higher, we
observe fast convergence to the optimal result.

Obviously, analytical methods such as FBP, FDR, and de-
convolution require little computation time. Considering po-
tential improvements in computer power and improved coding
of algorithms, we have focused on the obtained image quality
and not considered reconstruction run time in our comparison
of the different algorithms. However, for applications that re-
quire fast image reconstructions, a choice may be made for
faster methods such as FBP, FDR, or deconvolution at the ex-
pense of a lower image quality. Moreover, for the PSF-based
reconstruction, the user needs to make a few choices such as
the maximum number of iterations and the tolerance of the

Fig. 7. Blind image quality comparison of the different reconstruction algorithms applied to OPT zebrafish imaging. (left) Signal-to-noise ratio
versus slice number. (center) A single coronal slice through the zebrafish reconstructed with the four different reconstruction algorithms. The
different reconstruction methods are indicated in the legend. (right) Sharpness versus slice number.
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method to obtain optimal results. Although we choose the
number of iterations after visual inspection, the selection of
the maximum number of iterations can be automated during
the reconstruction process using the NR-IQA image quality
metrics presented here.

In this work we focused on the image quality improvement
of tangential and radial blurring in OPT image reconstruction.
The image quality is defined by the FWHM of point-like ob-
jects, as well as the SNR and a sharpness metric. Multiple fac-
tors influence which reconstruction technique performed best,
such as sparsity in the image domain, the NA of the imaging
lens, and the SNR of the imaged object. As a recommendation,
we advise to reconstruct sparse objects in almost all cases with
deconvolution. In cases where the PSF cannot be described by a
simple analytical expression, we recommend the PSF-based
reconstruction, which gives similar results for high SNR data.
For low NA tomographic imaging of nonsparse objects, we
recommend the PSF-based reconstruction, as it gives superior
image quality.

6. CONCLUSION

In this paper, we compared various tomographic image
reconstruction techniques that take the PSF into account.
For high SNR and nonsparse objects, the PSF-based
reconstruction yields superior performance. For sparse objects,
deconvolution shows the best performance.
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