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Several sensor-less wavefront aberration correction methods
that correct nonlinear wavefront aberrations by maximizing
the optical coherence tomography (OCT) signal are tested
on an OCT setup. A conventional coordinate search method
is compared to two model-based optimization methods.
The first model-based method takes advantage of the
well-known optimization algorithm (NEWUOA) and uti-
lizes a quadratic model. The second model-based method
(DONE) is new and utilizes a random multidimensional
Fourier-basis expansion. The model-based algorithms
achieve lower wavefront errors with up to ten times fewer
measurements. Furthermore, the newly proposed DONE
method outperforms the NEWUOA method significantly.
The DONE algorithm is tested on OCT images and shows
a significantly improved image quality. © 2015 Optical
Society of America
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Non-invasive three-dimensional imaging of the retina is one of
the main applications of optical coherence tomography (OCT)
[1]. The lateral resolution of the OCT system can be improved
by increasing the pupil size. In general, this leads to increased
optical wavefront aberrations that limit the resolution. Adaptive
optics (AO) has been successfully used to correct these optical
wavefront aberrations on large pupils (>2 mm), leading to an
improved image quality. Ultra-high lateral and axial resolutions
up to 3 and 2–3 μm, respectively, have been obtained by using
adaptive optics in OCT [2,3]. In general, the optical aberra-
tions in AO-OCT setups are determined by wavefront sensors
such as the Shack–Hartmann (SH) wavefront sensor. Imaging
systems with SH wavefront sensors suffer from several disad-
vantages, such as an increased cost and non-common path
wavefront errors. These drawbacks can be avoided if wavefront
sensor-less adaptive optics (WFSL-AO) methods are used.
WFSL methods optimize image quality metrics (e.g., the
strength of the OCT signal) in order to minimize the aberra-
tions and create a sharper image.

The ideal WFSL-AO algorithm for OCT is robust with re-
spect to noise and converges to its optimum in a small number
of measurements. Here, noise includes shot noise, speckle, and
variations of the sample structure in the B-scans with different
lateral positions. Finite difference approximations for the
explicit calculation of derivatives, such as a forward difference
in the Newton–Raphson method, require extra measurements
to determine the individual partial derivatives and are not
robust with respect to noise. Therefore, derivative-free optimi-
zation algorithms are preferred. It has been shown that various
derivative-free optimization algorithms can successfully im-
prove the quality and signal-to-noise ratio of OCT images
[4–7]. We demonstrated that the coordinate search (CS) algo-
rithm [4] reaches the maximum OCT signal if the aberrations
are not too large [7]. Additionally, simulated annealing [6] and
the stochastic parallel gradient descent algorithm [8] have been
successfully used for WFSL-AO in OCT and scanning laser
ophthalmoscopy, respectively. However, the final obtained root
mean square (RMS) wavefront error in these algorithms is very
susceptible to noise, because past measurements are not ex-
ploited. It was shown that the use of models can improve
the convergence rate of WFSL algorithms [9,10]. In this case,
the model, which is fitted to the measurements, is used to es-
timate the derivatives. The final result is much less susceptible
to noise, because past measurement information is used in the
fitting of the model. In [9], a quadratic model was fit to a set of
prior measurements of an image metric, so that the model
could be used to correct the aberrations. However, the aberra-
tion correction is limited to the relatively small region where
the quadratic model is a good approximation of the metric.

Recently, we developed and validated a transfer function for
optical wavefront aberrations in OCT [7]. This model predicts
the loss of the OCT signal caused by optical wavefront aberra-
tions. Based on the shape of the transfer functions and
simulations done using this model, we propose two advanced
model-based optimization algorithms for WFSL-AO in OCT,
the NEWUOA and the DONE algorithm, and compare these
two algorithms with the CS algorithm. The NEWUOA algo-
rithm [11], which is based on an adaptive quadratic model, is
chosen because it is one of the most well-known and best-
performing derivative-free algorithms in optimization. Our
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DONE algorithm, Data-based Online Nonlinear Extremum-
seeker, is based on a random Fourier basis. It is called an online
method, because the aberrations of each measurement are
chosen based on the outcome of previous measurements.
We demonstrate experimentally that both algorithms outper-
form the CS algorithm.

The experimental results are obtained using the AO-OCT
setup described in [7], except the spectrometer is a Cobra
VHR (Wasatch Photonics). The three investigated wavefront
correction algorithmsmaximize ametric based on themagnitude
of the OCT signal. The OCT signal is obtained by sampling the
spectrometer signal equidistantly in the k domain using interpo-
lation, taking the absolute value of the Fourier transform of the
spectrometer signal with the reference arm intensity subtracted.
The time and space averaged signal from a selected depth seg-
ment of the complete OCT signal in is used as the image quality
metric. The metric is a real valued function, f �α�, of the optical
wavefront aberrations represented in the vector α. The aberra-
tion coefficients αi in α are the coefficients for the normalized
Zernike polynomials in micrometers based on our model [7].

The first algorithm we consider is the coordinate search
algorithm from [4]. The CS algorithm successively scans in
S steps through a predefined domain of each aberration αi with
a step size s. It retains the value of αi of the scan that maximized
the metric before going to the next aberration, αi�1. A perfor-
mance trade off exists between the number of measurements
and the size of the scanning domain. The step size s has to
be small enough to ensure a small final error and large enough
to have fast convergence to the maximum. The coordinate
search optimization method is simple and converges slowly.

The second algorithm is the NEWUOA optimization algo-
rithm [11]. The NEWUOA algorithm is a computationally
efficient, derivative-free optimization method based on a quad-
ratic model. The m variables of the initial multidimensional
quadratic model are fitted to the first m measurements of
the metric based on the OCT signal. When a new measure-
ment is taken to update the quadratic model, an old measure-
ment is thrown away. An optimization routine minimizes the
quadratic model of −f �α� within a bounded region, in which
the quadratic model is considered accurate, leading to a new
estimate of the metric’s maximum. This process is iterated until
some stopping criterion is fulfilled. The NEWUOA algorithm
has three parameters. The first parameter, m, is the number of
variables the quadratic model is based on; the default value is
(2d � 1). Here, d is the number of aberration coefficients that
are optimized. The second parameter is the initial step size, ρα.
This parameter should not be chosen to be too large, so that the
fundamental features of the function are not skipped, and also
should not be too small, such that larger variations in f �α� are
probed. The third parameter ρΩ determines the final step size,
which should be small. It should be smaller than the RMS
wavefront error corresponding to λ

14
, the Maréchal criterion

for the diffraction limit.
The third algorithm, which we call DONE, fits a

multidimensional random Fourier basis to the measurements
[12]. With every new measurement taken, the function
FourierRegression, shown below in pseudo-code withMATLAB-
like notation, computes a new model f̂ �α� of the metric
function f �α�. After the model is obtained, a well-known opti-
mization routine, fmincon (MATLAB R2012b) (see [13,14] for
the theoretical background on fmincon), is run on the model.

Since we are looking for a maximum of f �α�, we minimize
−f �α�. The initial vector of the optimization algorithm is
αinit, which is bounded element-wise by the lower bound l b
and upper bound ub. These bounds are chosen such that the
aberration, which is to be corrected, is never out of the bounded
region. Before the bounding, a random perturbation is added to
avoid the algorithm getting stuck in an insignificant local mini-
mum. The coefficients of the next measurement αi�1 are deter-
mined by adding a small, normally distributed perturbation with
standard deviation σ1 to the last found minimizer αmin and
enforcing the bounds as before. This second perturbation is
added to keep the algorithm from concentrating on a too-narrow
part of the search space.

Algorithm 1. DONE Algorithm

1: Procedure DONE α0; N ; lb; ub
2: d � length�α0�
3: for i � 0 to N − 1 do
4: f i � f �αi� � measurement noise
5: f̂ �α� � FourierRegression��α0…αi �; �f 0;…; f i �; d�
6: αinit � max�min�αi � σ1randn�d ; 1�; ub�; l b�
7: αmin � fmincon�−f̂ �α�αinit; l b; ub�
8: αi�1 � max�min�αmin � σ1randn�d ; 1�; ub�; lb�
9: return αmin

Algorithm 2. Fourier Regression

1: Procedure Fourier Regression A; F ; d
2: ω � ffiffiffiffiffi

2σ
p

randn�D; d�
3: b � 2πrand�D; 1�
4: Z �

ffiffiffi
2
D

q
cos�ωA� �b…b��

5: w � �ZZT � λ length�F �eye�D��−1�ZF �
6: f̂ �α� �

ffiffiffi
2
D

q
wT cos�ωα� b�

7: return f̂ �α� ▹ f̂ �α� is a function

In the function FourierRegression, Line 5 solves the least
squares problem, ‖ZTw − F‖22 � λ length�F �‖w‖22. The con-
stantD specifies the number of random Fourier basis functions.
More basis functions will lead to a better representation of the
original function, but also to an increased computational load.
The parameter λ is a regularization parameter used to avoid
over-fitting the model to the measurements. The parameter
σ sets the standard deviation of the frequencies of the cosine
bases. It should be chosen such that the higher frequencies
of the unknown function f �α� are still captured; however,
the bandwidth should not be too high such that noise in higher
frequencies is also filtered. The MATLAB commands randn
and rand create normally and uniformly distributed matrices,
respectively. The command eye creates an identity matrix.

Table 1 shows the proposed parameter settings for the three
algorithms. The parameters of the CS and NEWUOA algo-
rithms are chosen such that the diffraction limit can be reached,
the maximum value of the added aberrations is covered, and
fundamental features of the metric function f �α� are not
missed. In order to find suitable values for the parameters of
the DONE algorithm, it was simulated using the OCT model
[7] for random aberrations between −0.45 μm and�0.45 μm.

We perform two experiments with three and seven aberra-
tions applied to the deformable mirror (DM) shown in
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Figs. 1 and 2, respectively. Each trial, we add a random combi-
nation of these wavefront aberrations with a total maximum
RMS wavefront aberration of 0.45 μm to the DM.
Subsequently, the metric calculated from one B-scan of a
Scotch tape sample is optimized using the three algorithms.
The Scotch tape sample is shown in Fig. 3. In each iteration,
only one B-scan with 512 A-scans is taken. The remaining
RMS error after the optimization is measured with the
Shack–Hartmann wavefront sensor. In the first experiment,
shown in Fig. 1, a combination of Zernike modes three to five,
i.e., a defocus and two astigmatisms, is applied to the DM and
corrected. In Fig. 1(a), the maximum achieved values of the
OCT signal with respect to the number of iterations are averaged
over 100 trials. In Fig. 1(b), the final RMS wavefront errors of
the 100 trials are shown in a box plot together with a black line
indicating the Maréchal criterion for the diffraction limit based
on the OCT center wavelength of 850 nm. In each box, the
central red line is the median, the edges of the box are the
25th and 75th percentiles, and the whiskers extend to the most
extreme data points not considered outliers. Outliers are plotted
individually with red markers. The coordinate search algorithm
converges slowly and does not have a good final RMSwavefront
error after it was stopped at 1050 measurements. However, it
manages to get a strong OCT signal. Before elaborating on this
observation, we continue with the description of the results. The
NEWUOA algorithm converges faster than CS. It obtains
smaller final RMS wavefront errors than CS, even though the
OCT signals are weaker. The DONE algorithm outperforms

both the other algorithms in final RMS error, with ten times
fewer measurements than the CS algorithm. Figure 2 shows a
similar experiment; however, in this case, a combination of
Zernike modes three to nine are applied and corrected by the
DM. The results for three and seven aberrations have similar
characteristics. However, the performance of the DONE algo-
rithm in contrast with the other algorithms in terms of the final
RMS error for seven aberrations has become even better.

Since the NEWUOA algorithm has its own stopping cri-
terion, the longest runs ofNEWUOA took 87 and 205measure-
ments for three and seven aberrations, respectively. The DONE
algorithmwas set to stop afterN � 100 andN � 250measure-
ments for three and seven aberrations, respectively. For seven
aberrations, the CS and the NEWUOA algorithm often do
not reach the diffraction limit, which is clear from the box plots
of the final RMSwavefront errors. TheDONE algorithm clearly
outperforms both theCS and theNEWUOAalgorithm in terms
of the final RMS error. In three dimensions, DONE converges
99% of the starting aberrations below the Maréchal criterion,
compared with 65% for seven dimensions.

To demonstrate the feasibility of our approach to actualOCT
imaging, we image the Scotch tape sample with a defocus of
−0.54 μm, a vertical astigmatism of 0.02 μm, and an oblique as-
tigmatism of 0.30 μm in Fig. 3(a). Figure 3(b) shows an OCT
imagewhere theRMSwavefront errormeasured by the SHwave-
front sensor has been reduced to 0.03 μm after 100 iterations of
the DONE algorithm. Using the same linear intensity scale, the

Table 1. Parameter Values for the Three Wavefront
Correction Algorithms (Wavefront Aberrations are
Defined in μm)

CS NEWUOA DONE

S 50 ρα 1 D 1000

s 0.01 ρΩ 1e-8 σ1 0.1
ffiffi
3
d

q

m 2d � 1 σ 1
λ 0.001

Fig. 1. AO-OCT wavefront correction for Zernike modes three to
five. (a) OCT signal averaged over 100 trials versus iteration number.
(b) Box plots of the 100 final RMS wavefront errors measured with the
SH wavefront sensor. The black line indicates the Maréchal criterion
for the diffraction limit.

Fig. 2. Same as Fig. 1, but for wavefront aberrations consisting of
Zernike modes three to nine.

Fig. 3. OCT B-scans of Scotch tape (a) before aberration correction
and (b) after 100 iterations of the DONE algorithm. The red line
indicates the depth of the OCT signal optimization.
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correctedOCT image has amuch strongerOCTsignal. The out-
comes of the other algorithms suffered from a weaker OCT
signal, but had a similar structure. Thus, they are omitted.

In Fig. 4(a), we show a B-scan of a lemon slice with an added
defocus of −0.49 μm, a vertical astigmatism of 0.18 μm,
and an oblique astigmatism of 0.32 μm. Figures 4(b)–4(d)
show the lemon slice image after 100 iterations of the CS,
NEWUOA, and DONE algorithms, respectively. A zoomed-
in area for each image is added to demonstrate the clear differ-
ence in the visible structural features, in addition to the strong
difference in OCT signal strength. For the large-area images,
the same linear intensity scale is used; however, the zoomed-
in areas all have an enhanced contrast scaling to show the fea-
tures more clearly. The remaining RMS wavefront errors read
from the coefficients applied to the DM for Figs. 4(b)–4(d) are
0.36, 0.23, and 0.06 μm, respectively.

In our experiments, we observed that even though the CS
algorithm obtained a similarly strong OCT signal strength in
the end, the resulting RMS error is much lower for the DONE
algorithm. We attribute this phenomenon to the noise in the
OCT signal measurements. The CS algorithm does not take
the noise into account and can therefore yield OCT signals that
are strong only due to noise. In contrast, the DONE algorithm
builds its model based on all known measurements, making it
less susceptible to noise as the number of measurements in-
creases. The NEWUOA algorithm can keep track of a fixed
number of measurements, but this number is inherently lim-
ited by the complexity of the quadratic model it uses. It is there-
fore less susceptible to noise as well, but, as can be seen in the

experimental results, the restriction to a fixed number of
measurements results in a considerable increase in the final
RMS wavefront error. The superior performance of the DONE
algorithm, however, comes at the price of an increased compu-
tational complexity. While the computational complexity for
CS and NEWUOA is independent of the number of measure-
ments, the computational complexity of a naive implementa-
tion of DONE increases with every iteration. The CS and
NEWUOA algorithms have a computational time below
1 ms. However, the computational time of the DONE algo-
rithm is in the order of 60 ms during the experiments. This
computational time is equal to the acquisition and processing
time of a B-scan in our OCT system; therefore, it is not a limit-
ing factor. We expect that the computational complexity can be
reduced below 1 ms by using a recursive least squares algorithm
in the FourierRegression function, optimized compiled code,
and parallel processing on a graphics processing unit.

In short, the performance of three methods for WFSL-AO
in OCT has been investigated experimentally. The DONE al-
gorithm outperforms both NEWUOA and CS in terms of final
RMS error, and it converges up to ten times faster than the CS
algorithm. We implemented the DONE algorithm in OCT
imaging and showed a significantly improved image quality.
We showed that for large aberrations, the DONE algorithm
succeeds in correcting a noisy signal with high accuracy.
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Fig. 4. OCT B-scans of a lemon slice (a) before aberration correc-
tion and (b) after 100 iterations of the CS algorithm, (c) of the
NEWUOA algorithm, and (d) of the DONE algorithm. The red line
indicates the depth of the OCT signal optimization, and the green
rectangle indicates the zoomed-in area. An enhanced contrast scaling
is applied to the zoomed-in areas.
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