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Summary

This thesis describes the application of optical coherence tomography (OCT) for
microscopic 3D imaging of plants and plant pathogens. With its unique optical sec-
tioning, label-free, and in-vivo imaging capability, OCT can complement traditional
microscopic plant imaging methods. Especially, for the challenging imaging of un-
labeled pathogens inside plants, OCT can have a clear advantage. However, for
optimal imaging of small pathogens inside the plant the imaging depth, resolution,
and specificity of OCT imaging needs to be improved, which is the topic of this
thesis.

The optical imaging depth in plant leaves is largely restricted by the presence of
air-filled cavities for gas exchange of the plants. The air-tissue interfaces strongly
scatter light and distort the wavefront, resulting in a poor image quality. We show
in chapter 2 that by infiltrating the leaf tissue with water or perfluorodecalin, the
detrimental effect of the air-filled cavities on the OCT imaging is mostly removed and
the OCT imaging depth is extended to the full leaf cross section of a few hundred
micrometers. The improved imaging depth makes it possible to quantify the lateral
resolved leaf thickness.

OCT imaging is based on obtaining the travel distance of scattered light with
the interference of broadband light. In spectral-domain OCT, the interference is
measured as a function of the wavenumber, and the reflectance at each depth is
obtained simultaneously by taking the Fourier transform of the interference signal.
This conventional reconstruction limits the axial resolution to the coherence length
of the source, which can only be improved by hardware adaptations. Spectral
estimation (SE) methods can estimate the scattering positions with higher accu-
racy than the Fourier transform by assuming sparsity in the reflectivity profile. In
chapter 3 of this thesis, an SE method, the iterative adaptive approach (IAA), is
optimized for OCT processing yielding an axial resolution improvement of a factor
2 to 10, dependent on the signal-to-noise ratio. Contrary to other SE methods, IAA
gives a faithful reconstruction of the intensity and speckle statistics and in its com-
putationally efficient implementation has a sub-second OCT B-scan reconstruction
time.

In chapter 4, SE-OCT is made compatible with coherent refocusing techniques
for extending the depth of field (DOF) and computational aberration correction.
Using a short wavelength in the visible light range and a high numerical aperture for
light focusing, a high lateral resolution of 0.8 µm was obtained. SE-OCT improved
the axial resolution of the small-bandwidth visible light source from 8 µm to 1.5 µm.
Refocusing the signal and applying computational aberration correction gave a DOF
extension with a factor of 20, resulting in a high 3D resolution over a large volume.

Conventional OCT imaging has a poor specificity to different tissue structures
as it images the morphology based on the scattering properties which are quite
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x Summary

similar for different tissue structures. Hence, distinguishing plant pathogens from
the tissue in which they are growing is challenging if only the morphology is imaged.
In chapter 5, we show how we imaged the temporal fluctuation of the speckle
amplitude in OCT images to create contrast between pathogen and plant tissue.
Dynamic OCT (dOCT) uses both the amount and the time-scale of fluctuations to
create a false-color image with functional contrast of different tissue subcellular
activity. Bremia lactucae, a downy mildew in lettuce, gives a strong fluctuation
of speckle amplitude at intermediate frequencies between 0.7 and 5.5 Hz, while
plant tissue gives a more stationary signal at a frequency of 0 Hz. This difference in
dynamic signal is used to image Bremia hyphae in a living plant leaf. By segmenting
the 3D pathogen structure in the dOCT leaf images we quantified the degree of
Bremia infection and saw a significant difference in resistance between different
lettuce genotypes. Moreover, we demonstrate the in-vivo imaging capability of
OCT by imaging and quantifying the progress of Bremia infection over the course
of three to four days and the growth speed of individual hyphae.

In the concluding chapter, promising future directions for OCT plant imaging
are discussed. The extension of spectral estimation OCT for reducing phase leak-
age in phase-sensitive OCT imaging is discussed with potential application in OCT
vibrometry. Also, 2D SE-OCT is presented for the computational enhancement of
the lateral resolution.

This thesis has shown the value of high-resolution OCT for plant imaging with
biological relevance. This was achieved by optical clearing-based image depth
enhancement, spectral-estimation OCT for computational resolution and DOF im-
provement, and dynamic OCT contrast enhancement.



Samenvatting

Dit proefschrift beschrijft de toepassing van optische coherentie tomografie (OCT)
voor microscopische 3D-beeldvorming van planten en plant pathogenen. OCT kan
traditionele microscopische beeldvormingsmethoden die gebruikt worden voor het
beeldvormen van planten aanvullen met zijn unieke eigenschappen voor het onder-
scheiden van diepte en het in in-vivo beeldvormen zonder labels. Vooral voor de
uitdagende taak van het beeldvormen van ongelabelde ziekteverwekkers in planten
kan OCT een duidelijk voordeel hebben. Echter, voor optimale beeldvorming van
kleine en weinig contrastrijke pathogenen in de plant moeten de beeldvormings-
diepte, ruimtelijke resolutie en specificiteit van OCT-beeldvorming worden verbe-
terd. Dat is het onderwerp is van dit proefschrift.

De optische beeldvormingsdiepte in plantenbladeren wordt grotendeels beperkt
door de aanwezigheid van met lucht gevulde holtes voor gasuitwisseling van de
planten. De lucht-weefsel-overgangen verstrooien het licht sterk en vervormen het
golffront, wat resulteert in een slechte beeldkwaliteit. We laten in hoofdstuk 2 zien
dat door het bladweefsel te infiltreren met water of perfluordecaline, het nade-
lige effect van de met lucht gevulde holtes op de OCT-beeldvorming grotendeels
wordt geëlimineerd en de OCT-beeldvormingsdiepte wordt uitgebreid tot de volle-
dige dwarsdoorsnede van het blad van enkele honderden micrometers. De ver-
beterde beeldvormingsdiepte maakt het mogelijk om de bladdikte te kwantificeren
over het hele blad.

OCT-beeldvorming is gebaseerd op het verkrijgen van de afgelegde weg van ver-
strooid licht door middel van interferentie van breedbandlicht. In spectraal-domein
OCT wordt de interferentie gemeten als functie van het golfgetal en wordt de re-
flectie op elke diepte gelijktijdig verkregen door het interferentiesignaal Fourier te
transformeren. Deze conventionele reconstructie beperkt echter de axiale resolutie
tot de coherentielengte van de bron. Deze kan normaliter alleen worden verbeterd
door hardware-aanpassingen.

Spectrale schattingsalgoritmes (SE) kunnen de verstrooiingsposities met een ho-
gere nauwkeurigheid schatten dan die bepaald worden met een Fourier-transformatie
door uit te gaan van een open structuur in het reflectiviteitsprofiel. In hoofdstuk 3
van dit proefschrift wordt een SE-methode, de iteratieve adaptieve methode (IAA),
geoptimaliseerd voor OCT-reconstructie, wat een axiale resolutieverbetering ople-
vert van een factor 2 tot 10, afhankelijk van de signaal-ruisverhouding. In te-
genstelling tot andere SE-methoden, geeft IAA een getrouwe reconstructie van de
intensiteit en spikkel-verdeling. De efficiënte implementatie in de code geeft een
OCT B-scan reconstructietijd van minder dan een seconde.

In hoofdstuk 4 wordt SE-OCT geschikt gemaakt om te combineren met cohe-
rente herfocusseringstechnieken voor het vergroten van de scherptediepte (DOF)
en het computationeel corrigeren van aberraties. Door gebruik te maken van een
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xii Samenvatting

korte golflengte in het zichtbare deel van het spectrum en een hoge numerieke
apertuur voor het focussen van licht wordt een hoge laterale resolutie van 0.8 µm
verkregen. SE-OCT verbeterde de diepteresolutie van de zichtbare-golflengte licht-
bron met kleine bandbreedte van 8 µm naar 1.5 µm. Door het signaal opnieuw
te focussen en computationele aberratiecorrectie toe te passen wordt de DOF ver-
groot met een factor 20, wat resulteerde in een hoge 3D-resolutie over een groot
volume.

Conventionele OCT-beeldvorming heeft een slechte specificiteit voor verschil-
lende weefselstructuren aangezien het de structuur afbeeldt op basis van de ver-
strooiingseigenschappen. Deze zijn vrij gelijkaardig voor verschillende weefsel-
structuren. Daarom is het een uitdaging om plant pathogenen te onderscheiden
van het omliggende weefsel waarin ze groeien, als alleen de morfologie in beeld
wordt gebracht.

In hoofdstuk 5 hebben we de temporele fluctuatie van de OCT signaal ampli-
tude gebruikt om contrast te creëren tussen pathogeen en plantenweefsel. Dy-
namische OCT (dOCT) gebruikt zowel de sterkte van het signaal als de tijdschaal
van de fluctuaties hierin om een afbeelding in valse kleuren te maken met functio-
neel contrast van subcellulaire activiteit in verschillende weefsels. Bremia lactucae,
een valse meeldauw in sla, geeft een sterke fluctuatie van de OCT amplitude bij
middenfrequenties tussen 0.7 en 5.5 Hz, terwijl plantenweefsel een meer stationair
signaal geeft bij een frequentie van 0 Hz. Dit verschil in het dynamische signaal
wordt gebruikt om Bremia hyfen in een levend plantenblad af te beelden. Door de
3D-structuur van de pathogeen in de dOCT afbeeldingen te segmenteren, kwanti-
ficeerden we de mate van Bremia-infectie en zagen we een significant verschil in
resistentie tussen verschillende sla-genotypes. Bovendien demonstreren we het in-
vivo beeldvormingsvermogen van OCT door de voortgang van Bremia-infectie in de
loop van drie tot vier dagen in beeld te brengen en de groeisnelheid van individuele
hyfen te kwantificeren.

In het afsluitende hoofdstuk worden veelbelovende toekomstige richtingen voor
de toepassing van OCT voor het beeldvorming van planten besproken. De toepas-
sing van spectrale schatting OCT voor het verminderen van onderlinge fase versto-
ring in fasegevoelige OCT-beeldvorming wordt besproken met mogelijke toepassing
in OCT-vibrometrie. Ook wordt 2D SE-OCT gepresenteerd voor de computationele
verbetering van de laterale resolutie.

Dit proefschrift heeft de waarde aangetoond van OCT met hoge resolutie voor
beeldvorming van planten met biologische relevantie. Dit werd bereikt door het
toepassen van blad infiltratie voor het verbeteren van de beeldvormings diepte,
spectrale schatting OCT voor het verbeteren van de resolutie en scherptediepte, en
dynamische OCT voor het creëren van verbeterd contrast.
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2 1. Introduction

1.1. Imaging in plant phenotyping
Vegetables and fruits constitute an indispensable part of human’s daily nutrition.
In the past centuries, agriculture has developed from small scale growing to large
scale production on specialized farms. This development has increased efficiency
and yield, allowing to feed the growing world population.

As the yield in agriculture is highly dependent on circumstances like weather,
soil condition, and the presence of diseases, farmers have tried to control these
circumstances by irrigation, fertilization, climate control in greenhouses and the
use of pesticides. However, these techniques are not only expensive, but often
also have detrimental effects to the environment and biodiversity. Irrigation, for
example, exhausts water resources in times of drought, the use of artificial fertilizer
increases the nitrogen deposit in nature resulting in biodiversity loss, and pesticides
kill many organisms that are crucial to the ecosystem.

To complement these techniques and reduce their use, while maintaining or
even increasing yield, plant breeders develop crop varieties that are better resis-
tant against biotic stress, such as pathogens, and abiotic stress, such as drought
and extreme temperatures. As environmental effects change and new pathogens
develop there is a constant need for development of new varieties. Climate change
and the resulting extreme weather makes this need even more urgent.

In pathogen resistance breeding, there is a constant race between plant breed-
ers that develop resistant varieties and fast evolving pathogens that break the re-
sistance. Until recently, most resistance breeding has largely been based on verti-
cal resistance, where the resistance is based on a single gene and corresponding
protein that makes the plant resistant to a specific disease. Horizontal resistance
breeding, on the contrary, aims to improve the quality and robustness of the total
immune system of the plant. The resulting resistance is not always complete, but
the reduced susceptibility of a plant applies to a larger variety of diseases and is
harder to break by the pathogens. As the development of horizontal resistance is
gradual rather than binary, there is a need for objective, accurate and quantitative
evaluation of the level of resistance of a variety [1–3].

Evaluation of plant performance, resulting from the combination of its genes
and its environment, is called phenotyping [4, 5]. Besides resistance to disease,
accurate and quantitative phenotyping is also crucial for developing crops with bet-
ter drought resistance, higher yield, more appealing visual appearance and better
taste. Since these improvements are often made in small steps, phenotype quantifi-
cation is of paramount importance. While genetic technology has rapidly developed,
a lot of the phenotyping is still done in a subjective and labour intensive way by
visual scoring or measuring by hand. Thus, phenotyping is currently a bottleneck
in effective plant breeding, since fast, automated, and accurate phenotyping tech-
nology has lagged behind [6, 7]. Digital imaging and image processing can be a
major plant phenotyping method, as images can form the basis for accurate and
quantitative description of the plant structure as well as function.
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1.1.1. Plant imaging methods
In the imaging process, information from the sample is obtained through interaction
of waves with the sample, which then brings the information to the detector. Differ-
ent imaging approaches make use of different wave types, such as electron waves
(electron microscopy), electromagnetic waves (X-ray, optics, MRI) or mechanical
waves (ultrasound). Through scattering, transmission, reflection, emission, and/or
fluorescence, information about the structure or function of the plant can be ob-
tained.

The kind of structural or functional properties of the sample that can be imaged
is dependent on the type of waves, the characteristics of the tissue interaction and
the imaging method. Besides the type of contrast, the performance of the different
imaging methods also differs in terms of resolution, imaging depth, and imaging
speed. Moreover, some of of the imaging methods allow for non-invasive, in-vivo
imaging while other methods need destructive sample preparation. All these factors
have to be taken into account when an imaging modality is applied to investigate
particular plant phenotypes.

Common functional optical plant imaging methods are (hyper-) spectral imag-
ing [8, 9], thermal imaging [10, 11] and fluorescence imaging [12]. Spectral imag-
ing measures the spectral reflectance or transmittance of plants, which can be an
indication of the plant’s condition. Also the plants temperature, measured with ther-
mal imaging, reveals information of the plants response to, for example, drought.
Fluorescence imaging can give valuable information on the condition of the pho-
tosynthesis (chlorophyll fluorescence imaging) [12] or the presence of metabolic
compounds that are formed in stress responses [13]. These three methods are
sensitive to the function and chemical composition of the plants.

Morphological imaging does not directly probe the function or chemical com-
position of plants, but instead measures their structure in 2D or 3D. Quantitative
analysis of the structural images can give information that can be related to genes
and the environment. 2D imaging with conventional cameras can give basic struc-
tural information, but as a plant is a 3D object, 3D imaging techniques give more
precise information. The most common way to obtain the 3D structure is by ob-
taining distance maps through light detection and ranging (LIDAR), laser scanning,
and stereo vision [14, 15]. LIDAR measures the time-of-flight of light reflected by
the plant and can be used for single plants [16] up to measuring canopy height
with airplanes or drones [17]. Laser scanning can be based on time-of-flight mea-
surement (similar to LIDAR) or triangulation. With triangulation, a laser spot, line
or other structure is projected on the object and moved. From the motion and
deformation of these structures, captured by a 2D camera, the 3D structure of the
object is reconstructed [15]. Stereo vision uses 2D images from different angles
to reconstruct the 3D plant structure [18]. LIDAR, laser-scanning and stereo vision
can only image the external structure of the plant, most often at the whole plant
level.

Tomographic methods like micro-CT [19] and micro-MRI [20] and PET [21] pro-
vide 3D imaging of both the external and the internal plant morphology or localized
functionality at whole plant or organ scale with resolutions of typical 100 µm and up
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to 10 µm. These three tomographic methods have a useful place in plant science,
but their application is limited because they require access from all sides, and are
relatively expensive and slow. Moreover, they work with ionizing radiation (CT),
radioactive isotopes (PET) or strong magnetic fields (MRI), which requires special
precautions.

Smaller scale microscopic imaging of plants can be applied to study the more
fundamental plant processes at cellular level, such as microscopic growth, organ
initiation, and interaction with pathogens [22]. The main imaging modality for
studies at the millimeter to cellular level is optical microscopy [23], either based on
fluorescence, absorption, scattering or refractive index contrast.

In this thesis, we will focus on optical imaging of plants at microscopic scale,
ranging from sub-cellular scale to parts of plant organs, such as leafs or roots. In
the following section we will discuss microscopic optical imaging theory and its ap-
plication to plant imaging. We will identify challenges with the standard microscopic
techniques, when it comes to application to plant imaging. Optical coherence to-
mography (OCT) is a relatively new imaging technique that can be applied to plant
imaging. This technique will be discussed in the third section of this chapter, and
will be the technique central in this thesis.

1.2. Microscopic optical imaging
In optical imaging electromagnetic waves transfer the spatial information of the
object, on the one side, to the detector at the other side, which is for example
a camera or a retina. The light waves travel through an imaging system which
usually consist of lenses and mirrors that focus and steer the light waves in order
to obtain a sharp image on the detector. In this section we explain the basis of light
wave propagation, different microscopic imaging systems and their strengths and
limitations when applied to plant imaging. At the end we indicate how OCT can
perform better on some of these limitations.

1.2.1. Diffraction and resolution
Figure 1.1 shows one of the most basic optical imaging systems: the 4-f system.
Light from the object is captured by an objective lens and then imaged on the
detector by a tube lens. In geometrical optics, light is assumed to travel along
straight rays such that a point in the object corresponds to a point at the detector.
In reality, light is a spherically propagating wave that diffracts around edges. Thus,
even for a perfectly designed imaging system, a point in the object becomes a
blurred spot at the detector, as shown in Fig. 1.1. This blurred spot is called the point
spread function (PSF), and is one of the most important parameters to characterize
an imaging system.

When two points in the image are closer to each other than the width of the PSF,
their blurred spots will overlap and they cannot be distinguished. Thus, the width of
the PSF is an indication of the smallest details from the object that can be visualized
in the image, also called its optical resolution. According to the Rayleigh criterion
two points of the object are just distinguishable when their relative distance is at
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Figure 1.1: A 4-f imaging system.

least the radius of the first dark ring of the Airy pattern [24, p.157], which is the
PSF resulting from a circular aperture with uniform illumination. The radius of this
dark ring is [24, p.77]

𝑟 = 0.61 𝜆
NA

, (1.1)

where 𝜆 is the wavelength of the light and NA is the numerical aperture of the
imaging system, defined as

NA = 𝑛 ⋅ sin𝜃, (1.2)

where 𝑛 is the refractive index of the medium and 𝜃 the half opening angle as
shown in Fig. 1.1. Thus the NA of an imaging system, together with the wavelength,
determines the smallest lateral details that can be distinguished in a system that is
limited by diffraction.

1.2.2. Wide field microscopy
Figure 1.2(a) shows a schematic overview of a widefield microscope. In widefield
microscopy the sample is uniformly illuminated (from either the top or the bottom)
and the image formation takes place in the receiving light path. The reflected,
emitted fluorescence or transmitted light from the whole field of view (FOV) of the
object is captured simultaneously by the objective lens and projected on the camera
by the tube lens. The lateral PSF of a diffraction limited wide-field microscope is an
Airy disc with the radius of the first dark ring given by Eq. 1.1.

When the imaged sample extends outside the focal depth region (which is typi-
cally in the order of 10-30 µm), the blurred signal from these regions is also captured
on the camera, which gives a large background signal that reduces the contrast.
This is especially prevalent in highly scattering samples or samples with a large
background fluorescence. Together with the limited axial resolution, this contrast
reduction makes wide-field microscopy not well suitable for 3D imaging. Thicker
samples need to be fixated and sliced in thin layers to obtain good quality images.

Plant imaging with wide-field microscopy
Widefield microscopy is extensively applied for plant imaging. Brightfield microscopy,
where transmitted light is captured and differences in absorption or scattering are
used as contrast mechanism, is often used in combination with optical clearing and
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Figure 1.2: Illustrations of (a) a widefield and (b) a confocal microscope. The fluorescence illumination
paths are indicated in green, the brightfield illumination path is indicated in blue and the detection
paths are indicated in red. The orange illumination path in (b) indicates out-of-focus fluorescence that
is partially blocked by the point detector.

staining of the structures of interest. For example, Trypan blue staining with clear-
ing can be used to image downy mildew inside lettuce leaves [25]. Physically slicing
is another strategy to reduce the scattering background and obtain clear widefield
images from within the tissue. Without clearing or slicing, only the epidermal cells
and stomata at the surface can be visualized in 2D.

Also widefield fluorescence microscopy is widely used for microscopic plant
imaging, as it has a high contrast between fluorescence and background. Using
genetic transformations, specific features can be made to express fluorescent pro-
teins that allow for imaging these labeled structures [26, 27]. Without genetic
transformation, less specific auto-fluorescence of for example chloroplasts can be
utilized [28], or the sample can be labeled with fluorescent markers that chemically
bind to a target compound [29]. Widefield fluorescence microscopy also suffers
from a high background signal, including signal from auto-fluorescence and signal
from scattering when a thick sample is used, and is not well suitable for 3D imaging.

1.2.3. Confocal microscopy
Confocal microscopy (CM) strongly reduces the background signal and improves
the axial resolution compared to widefield microscopy [30]. Figure 1.2(b) shows a
schematic image of a confocal microscope. In CM, the illumination beam is focused
on the sample and the illuminated spot is imaged back on a point detector. The
focused illumination spot has the same shape as the wide-field PSF. However, this
spot is imaged in collection and sampled with a pinhole before the detector, which
gives a lateral PSF that is equal to the square of the wide-field PSF. Hence, the
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resolution improves by a factor √2. Moreover, the pinhole that is placed before the
detector, blocks most of the blurred light from the out-of-focus regions (the orange
path in Figure 1.2(b)), while it lets the light from the focus point pass through.
This leads to a strong contrast enhancement. Since the beam is scanned in lateral
directions to obtain an image over the whole sample, CM requires a more advanced
setup and larger imaging time than wide-field microscopy.

The ability to select the signal only from the depth of field and suppress signal
from other depths is called optical sectioning. This allows for 3D imaging without
physically slicing the sample, even when imaging a scattering sample. Usually a
volume image is created as a stack of en-face images by moving the sample in the
axial direction with an accurate translation stage.

While CM is most commonly based on fluorescence, it is also applied in a re-
flection configuration, but at the cost of a smaller optical sectioning ability due to
coherence between illuminated and reflected light.

Plant imaging with confocal microscopy
Fluorescence-based CM is a widely used approach for optical 3D imaging of plants
at sub-cellular resolution [31]. As non-destructive imaging method, it can image
in-vivo, allowing for imaging of plant processes like root growth and plant-pathogen
interaction over time [32]. The typical maximum imaging depth with confocal mi-
croscopy in uncleared plant tissue is 60-80 µm [33]. For imaging deeper into the
plant tissue or reduce image degradation, the plant tissue can be made transparent
using different optical clearing protocols [33, 34] that can be combined with stain-
ing using fluorescent labels [35]. A point of attention for confocal microscopy is the
high illumination intensity at the focal spot. While a high light intensity leads to a
better fluorescence signal, it may result in phototoxicity, leading to the formation
of substances that affect the living organisms biochemistry [36], and can cause
photo bleaching, leading to a decrease of fluorescence. Thus, especially for in-vivo
imaging, the illumination intensity needs to be limited.

Generalization of selective fluorescence excitation
CM applies local illumination to reduce background signal and increase the reso-
lution. This concept can be extended to other selective illumination approaches,
for example light sheet fluorescence microscopy (LSFM). In LSFM, the sample is
illuminated with a light sheet from the direction perpendicular to the collection
path [37, 38]. This allows for optical sectioning and background fluorescence re-
duction in combination with simultaneously imaging the whole lateral field of view
in a wide-field collection configuration. LSFM has been used for 3D imaging of plant
organs with cellular resolution [39]. However, it requires a good access to the sam-
ple from all sides both to generate a good light sheet for illumination and to collect
the fluorescence. In addition, it also suffers from scattering in tissue.

1.2.4. Limitations of optical microscopy for plant imaging
Though optical microscopy successfully has been applied in many plant imaging
applications, there are still significant limitations. First, the highly scattering plant
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Figure 1.3: Schematic overview of a spectral-domain OCT setup.

tissue limits the imaging depth in non-cleared tissue. Second, many techniques
depend on (fluorescence) labeling, which is not always available nor desired. Third,
optical microscopy has limited optical sectioning abilities, especially in absence of
fluorescence, which hampers its 3D imaging capability. The next section discusses
optical coherence tomography and how some of these limitations can be addressed
with this imaging technique.

1.3. Optical coherence tomography
Optical coherence tomography (OCT) uses interference of broadband light to mea-
sure travel distance of reflected light from the sample to create optical sectioning.
When the optical beam is scanned in the lateral direction over the sample, a 2D or
3D image of the reflecting structures can be obtained. OCT was first introduced
in a time-domain implementation in 1991 [40]. Its development has accelerated
after the introduction of Fourier domain OCT (FD-OCT) with its superior sensitiv-
ity [41, 42]. Fourier-domain OCT has become the standard imaging modality in
ophthalmology, and has also found its way to other fields such as cultural heritage
imaging [43] and plant imaging [44, 45].

This section gives a short introduction to OCT theory, followed by two subsec-
tions on axial resolution and the trade-off between lateral resolution and depth-of-
focus (DOF), topics that are further developed in this thesis.

1.3.1. OCT theory
Figure 1.3 gives a schematic overview of a spectral-domain OCT (SD-OCT) setup.
Light from a broadband light source is split into a reference arm and a sample arm.
After reflecting on the reference mirror and the sample respectively, the light is
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recombined and interferes on a spectrometer.
The light field from the reference arm can be described as

𝐸𝑟 = √𝑆0(𝑘)𝑎𝑟e2𝑖𝑧𝑟𝑘 , (1.3)

where 𝑆0(𝑘) is the source spectral density as function of wavenumber 𝑘, 𝑖 is the
complex number, 𝑎𝑟 is the reference arm reflectivity and 𝑧𝑟 is the reference arm
length. Note that for simplicity the splitting ratio of the beamsplitter is omitted. The
field from the sample arm reflects at multiple depths in the sample, and can thus
be described as

𝐸𝑠 = √𝑆0(𝑘)∫𝑎 (𝑧𝑠) e2𝑖𝑧𝑠𝑘d𝑧𝑠 , (1.4)

where 𝑎(𝑧𝑠) is the reflectance as function of depth 𝑧𝑠 in the sample. Note that depth
𝑧𝑠 is measured in optical path length (OPL), being the integral of the refractive index
over depth. In the rest of the theory, this dependency on the refractive index is
implicitly assumed.

The detected light intensity combines these fields as

𝐼𝐷(𝑘) = |𝐸𝑟 + 𝐸𝑠|
2 = |𝐸𝑟|

2 + |𝐸𝑠|
2 + 𝐸𝑟𝐸∗𝑠 + 𝐸∗𝑟𝐸𝑠 . (1.5)

The first term |𝐸𝑟|2 is a constant reference signal with the source shape, also called
the direct current (DC) term as it does not contain interference information. This
term can easily be subtracted. The second term, |𝐸𝑠|2, is the auto-correlation
signal, the interference of the signal from the sample with itself. When the sample
reflectivity is much lower than the reference arm reflectivity, which is the case for
OCT imaging of tissue, this term is relatively small and is only relevant for small path
length differences. Hence this term can be separated from the last two terms in
the reconstruction by putting the sample at a small offset from the zero delay. The
last two cross-interference terms are the signal of interest for OCT. Using eqs. 1.3
and 1.4, the interference signal can be written as

𝐼(𝑘) = 𝐸𝑟𝐸∗𝑠 + 𝐸∗𝑟𝐸𝑠 = 𝑆0(𝑘)𝑎𝑟∫𝑎 (𝑧𝑠) cos (2(𝑧𝑠 − 𝑧𝑟)𝑘)d𝑧𝑠 . (1.6)

Omitting the constant reference arm reflectivity, defining 𝑧 = 𝑧𝑠 − 𝑧𝑟 as new depth
coordinate system and �̃� = 2𝑧 as the double pass path length difference between
the sample and reference arm, equation 1.6 can be rewritten to the product of the
source intensity and the inverse Fourier transform of combined reflectivity �̃� ( �̃�2):

𝐼(𝑘) = 𝑆0(𝑘)∫ �̃� (
�̃�
2) e

−𝑖�̃�𝑘d�̃�, (1.7)

where

�̃� ( �̃�2) = �̃� (𝑧) = 𝑎 (𝑧) + 𝑎
∗ (−𝑧) (1.8)

is the combination of the reflectivity and the mirrored complex conjugate of the
reflectivity. Thus the reflectivity �̃�(𝑧) of the sample is encoded as frequency in the
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wavenumber domain and can be estimated by taking the inverse Fourier transform
of 𝐼(𝑘). The estimated reflectivity �̂� ( �̃�2) becomes

�̂� ( �̃�2) = ℱ
−1 {𝐼(𝑘)} = ℱ−1 {𝑆0(𝑘)} (�̃�) ∗ �̃� (

�̃�
2) , (1.9)

where ℱ−1 denotes the inverse Fourier transform and ∗ denotes a convolution.
In reality, 𝐼(𝑘) is measured for discrete wavenumbers 𝑘𝑛 and the inverse Fourier

transform is normally done by an inverse discrete Fourier transform (DFT). More-
over, as most spectrometers do not have a uniform sampling in wavenumber space,
the interference signal needs to be interpolated to be able to use the fast Fourier
transform (FFT). Discrete sampling of the interference signal limits the absolute
path length difference between reference and sample arm 𝑧 that can be measured.
Using the Nyquist criterion and the relation �̃� = 2𝑧, we obtain a maximum imaging
depth

𝑧𝑚𝑎𝑥 =
�̃�𝑚𝑎𝑥
2 = 𝜋

2𝛿𝑘 , (1.10)

with 𝛿𝑘 the wavenumber sampling step size.

1.3.2. Axial resolution in OCT
Equation 1.9 shows that the estimated reflectance is a convolution of the inverse
Fourier transform of the source spectrum, also indicated by 𝛾, with the combined
reflectivity �̃� ( �̃�2). The inverse Fourier transform of a Gaussian source spectrum with
a full-width at half maximum (FWHM) of Δ𝑘 is

𝛾(𝑧) = ℱ−1 {𝐼0e−
4 ln2(𝑘−𝑘𝑐)2

Δ𝑘2 } (�̃�)|
�̃�=2𝑧

= 𝐼0Δ𝑘e𝑖2𝑧𝑘𝑐
4√𝜋 ln 2

e−
Δ𝑘2𝑧2
4 ln2 . (1.11)

The FWHM of 𝛾(𝑧) is also called the round trip coherence length 𝑙𝑐 of the source,
and can, for the Gaussian source spectrum, be expressed as

𝑙𝑐 =
4 ln 2
Δ𝑘 ≈ 2 ln 2

𝜋
𝜆2𝑐
Δ𝜆 , (1.12)

where 𝜆𝑐 = 2𝜋/𝑘𝑐 is the center wavelength and Δ𝜆 the FWHM of the corresponding
wavelength spectrum.

A close look at Eq. 1.9 shows that 𝛾(𝑧) acts as an axial PSF for the complex
field reflectance, making the coherence length a measure for the axial resolution.
Sometimes, the PSF based on reflectance intensity 𝑖(𝑧) = |�̂�(𝑧)|2 is used as measure
for the axial resolution, which is a factor √2 narrower. Equation 1.12 clearly shows
the inverse relationship between source bandwidth and coherence length. The main
method to improve the axial resolution has been to extend the source bandwidth
or reduce the source center wavelength 𝜆𝑐. However, when that is difficult, due to
limited source availability or design purposes, computational methods can be used
to obtain a higher resolution with a limited source bandwidth.
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Computational methods for improving axial resolution
Various computational methods for improving the axial resolution have been pro-
posed: spectral reshaping [46], deconvolution [47], and sparsity-based optimiza-
tion methods [48, 49].

For spectral reshaping the interference signal 𝐼(𝑘) is divided by the source spec-
trum 𝑆0(𝑘) and multiplied by the desired spectral shape. This shapes the axial PSF,
as it is determined by the inverse DFT of the chosen spectral shape. For non-smooth
spectral source shapes, spectral reshaping to a smooth window, such as a Gaussian
or Hanning window, is often applied to obtain a smooth, symmetric PSF with low
side-lobes [50]. Reshaping to a wide window, such as a rectangular or crater-like
window [46], reduces the FWHM of the PSF at the cost of increasing side-lobes.
However, when low-SNR edges of the spectrum are amplified, the SNR of the OCT
image may decrease.

Deconvolution is a method to undo the distortion of the image caused by the
convolution of the imaged object with the PSF. Using the known or estimated PSF
shape, the blurring effect on the image can be reduced by the implementation of
deconvolution algorithms. To avoid noise enhancement, some regularization needs
to be applied to yield an optimal image. One of the most successful deconvolution
approaches for axial resolution enhancement in OCT is the iterative Lucy-Richardson
deconvolution [51].

Instead of using the DFT (equivalent to Eq. 1.9), the reflectivity �̃�(𝑧) of the
sample can be estimated using other inversion approaches. These methods improve
the resolution by adding a sparsity promoting regularization [49] or by using a
parametric model [52]. They avoid certain drawbacks of the DFT method, such as
periodic boundary conditions and spectral leakage [53]. Many of these methods
borrow from the spectral estimation methods from the field of signal processing,
since the reconstruction in FD-OCT is equivalent to a spectral estimation problem.
In chapter 3 of this thesis we will explore one of such methods for improving the
axial resolution.

1.3.3. Lateral resolution and depth of field
The axial and lateral resolution in OCT are largely decoupled. While the axial reso-
lution in OCT is based on the interference of broadband light, the lateral resolution
is determined by the optics that focuses the beam on the sample.

The optical setup of OCT is similar to that of a confocal microscope in reflection
mode. With a single-mode optical fiber as the illumination source and pinhole, the
lateral PSF will be Gaussian shaped. Taking the 1/e2 intensity as the aperture edge
to calculate the NA of the system, the FWHM of the PSF in focus is

FWHM𝑥𝑦 =
√2 ln 2
𝜋

𝜆𝑐
NA

≈ 0.37 𝜆𝑐
NA

. (1.13)

Although a high lateral resolution is preferred, it reduces the depth of field (DOF),
the axial depth range in which the width of the focused beam is close to its width in
focus. Since, Fourier-domain OCT simultaneously measures the signal for a large
depth range the ideal beam for OCT would be a pencil beam with a very narrow
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Figure 1.4: Plot of the lateral PSF for a Gaussian OCT beam focused at 𝑧 = 0 for three different NAs and
a center wavelength 𝜆𝑐 = 900 nm. The white dotted lines indicate the edge of the PSF, defined as the
location where the intensity is 1/e2 of the intensity at the center (𝑥 = 0). The red-dotted lines indicate
the edges of the depth-of-focus (DOF) in the right two images. In the left image the DOF extents to
outside the displayed depth range. Note that the 𝑥 and 𝑧 axes have a different scale.

width. However, with conventional optics the beam diverges outside the focus
plane. This widening of the beam is stronger with a high NA, as visible in Fig. 1.4,
where Gaussian beams with different NAs are plotted around focus. Defining the
DOF as the depth over which the PSF is smaller than √2 times the width in focus,
we can express the DOF for a Gaussian beam as

DOF = 2𝑧𝑅 =
2𝜆𝑐
𝜋NA2

, (1.14)

where 𝑧𝑅 is the Rayleigh length of the Gaussian beam. Equation 1.14 and the plots
in Fig. 1.4 explain why most OCT setups have a low NA in the order of 0.01-0.03,
which is much lower than most (confocal) microscopes. A low NA makes it possible
to acquire a sharp image over a large depth range at once, without having to move
the sample or the optics.

Note that the DOF reduces quadratically with the NA, while the lateral reso-
lution only increases linearly with the NA. While an NA of 0.03 gives a DOF than
about 60 times the lateral resolution (Fig. 1.4 left), an NA of 0.28 reduces this to
6 times the lateral resolution. Increasing the resolution by decreasing the OCT
center wavelength, reduces the DOF only linearly. However, this is only partially
possible, because scattering in tissue increases with smaller wavelengths and light
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with wavelengths below that of the visible range are more harmful to biological
tissue.

The trade-off between lateral resolution and DOF is a well known problem within
OCT research and a lot of research efforts has been spent on extending the depth
of field while maintaining a high lateral resolution. The methods for solving this can
be split in to hardware-based approaches and computational approaches.

Hardware based approaches for extending the DOF
Hardware based DOF extension methods can be divided into two categories. The
first method is engineering beams that are narrow over a larger axial range than a
Gaussian beam with similar lateral resolution. The most well-known example is a
Bessel beam [54, 55], which has a constant beam profile over a large depth range.
However, for Bessel beams the DOF extension comes at the cost of transferring
energy from the main lobe into side-lobes, which both reduce the SNR and introduce
side-lobe artefacts in the PSF. Another example is wavefront shaping that focuses
different rings of the aperture onto different depths. In effect, this is similar to
introducing spherical aberrations [56]. This DOF extension comes at the cost of a
reduced PSF width in focus and ringing artefacts.

The second class of hardware-based methods acquire multiple images, each
focusing at a different depth. This can be done sequentially in time, for example
by moving the sample [57] or using a tunable lens to vary the focal plane [58].
Another approach is by giving each focal distance a distinct optical path length
offset, such that the images can be acquired simultaneously and combined in the
reconstruction [59, 60]. The first method requires more acquisition time, while the
second approach requires a dense 𝑘-sampling for sufficient imaging depth to sep-
arate the images. In both cases, the acquired images need to be stitched together
in post-processing to obtain a high resolution image over a large DOF.

Computational methods for extended depth of field
The depth of field can also be extended computationally after acquisition [61].
Amplitude or intensity based deconvolution using a depth dependent defocused
PSF has been used to sharpen the image outside focus [47]. This approach is often
combined with axial deconvolution. Because these deconvolution methods neglect
the phase information, they do not give good results for closely separated scatterers
whose coherent fields interfere with each other. Thus they mainly improve image
sharpness, and are less able to resolve dense structures in the sample [61]. To
achieve that, we have to turn to methods that use the complex field.

One such method to extend the DOF is propagating the complex field of an
out-of-focus en-face plane to focus using scalar diffraction theory [61, 62]. Propa-
gation can be implemented by Fresnel propagation or using the angular spectrum
method. It also can be done by multiplying the 2D Fourier transform of the en-face
image with a complex exponential with a parabolic phase that effectively eliminates
the defocus aberration and results in a sharply focused image. While this method
yields good results, it has to be applied plane by plane, each having a different
defocus factor, which requires a lot of computations. Moreover, signals that end up
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Figure 1.5: Schematic overview over interferometric synthetic aperture microscopy. (a) The back and
forth propagation path between a scatterer (red) and the focal point of laterally shifted beams. The
scattering vector �⃗� consists of an 𝑥 and 𝑦 component. (b) Graphical illustration of the spatial frequencies
𝑘𝑥 and 𝑘𝑧 that are captured from the object. Red arcs correspond to a constant wavenumber 2𝑘, with
the factor 2 accounting for the round trip. Note that this figure shows a 2D cross-section of a 3D
geometry, with the geometry in the out-of-plan direction (𝑘𝑦) being the same as the geometry in the
𝑘𝑥 direction. Thus the the arcs are in reality parts of the Ewald sphere.

in another en-face plane because of the wavefront curvature outside focus cannot
be focused correctly using this method [61].
Interferometric synthetic aperture microscopy (ISAM) views OCT imaging as an
inverse scattering problem [61, 63]. This problem can be solved by a resampling in
the Fourier domain, a method that originates from the field of seismic imaging [64].
In ISAM, a synthetic aperture is placed in focus, and the scattered light can be
considered as traveling back and forth along the same straight path from the focal
point to the scatterer, as visualized in Fig. 1.5(a). The wavenumber of the scattered
light has both a depth (𝑧) component and a lateral (in the figure 𝑥) component. The
lateral location of the focus determines what lateral component of the wavenumber
is obtained for the scatterer in Figure 1.5(a). Taking the 3D Fourier transform of the
complex OCT field, after shifting the focus to 𝑧 = 0, allows to obtain the field in 𝑘-
space, as function of the scattering wavenumbers 𝑘𝑥 and 𝑘𝑦. However, in the axial
direction the wavefield is recorded as function of total wavenumber 𝑘 rather than
𝑘𝑧. Thus the recorded scattering wavenumbers lie on the red arcs in Figure 1.5(b),
rather than on straight, horizontal lines. Now, using the lateral wavenumbers, the
signal along these arcs in the 𝑘-space can be reassigned to the proper 𝑘𝑧 values:

𝑘𝑧 = √(2𝑘)
2 − 𝑘2𝑥 − 𝑘2𝑦 , (1.15)

where the factor 2 in front of 𝑘 is to account for the back-scattering geometry.
With a small NA, the opening angle is small, thus the arcs can be approximated by
straight lines. However, when the the NA (and thus 𝜃) increases, this approximation
is invalid. With ISAM, the recorded field is placed at its proper place in the frequency
domain using an interpolation to a linear grid in 𝑘𝑧, as determined by Eq. 1.15. The
ISAM refocused field with diffraction limited resolution can be obtained by a 3D
inverse Fourier transform of the resampled data.
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As both refocusing and ISAM are based on coherent interference of fields from
different scan lines, these methods require the signals from different scan lines to
be phase stable [61, 63, 65]. The most common sources of unstable phase are drift
in the sample or reference arm, jitter in the scanning system, and sample motion
during acquisition. Fast acquisition and sample fixation can reduce phase insta-
bility [66]. However, phase stability can also be obtained computationally, using
the phase from a reference interface on top of the sample, for example that from
a coverslip [63], or by estimating bulk phase shifts from correlating neighbouring
scan lines [67].

While with refocusing and ISAM, the DOF is not limited anymore by the beam
shape, there are still limits to the depth range where these methods can be suc-
cessfully applied. First, the phase stability requirement needs to be fulfilled over a
large lateral FOV for signal far from the focal plane. Second, the SNR outside the
focal region decreases significantly because the confocal gate suppresses scatter-
ing signal from outside the focal plane [63, 68]. While the coherent combination of
the signal from multiple scan lines increases the signal intensity outside the focal
plane, it does not reach the same level as the signal at the focal plane. Despite the
limitation from phase stability and decreasing SNR, the DOF can be extended by
more than an order of magnitude [61, 66].

1.3.4. Challenges for plant imaging with microscopy and OCT
While OCT naturally addresses some of the limitations of wide-field and confocal
microscopy as mentioned in subsection 1.2.4, other limitations are still present to
some degree. In this section we discuss three important challenges that will be
addressed in this thesis: improving the imaging depth in the presence of scatter-
ing, obtaining a high resolution in 3D, including the need for optical sectioning,
and reducing the dependency on (fluorescence) labels. Though we focus on plant
imaging, the mentioned challenges are also present when imaging other (biological)
samples.

Imaging deep in scattering tissue
One of the major drawbacks of microscopy is the limited imaging depth in plant
tissue due to light scattering. Especially in leaves and other tissue with cavities that
are filled with gas [33], light scattering is very strong due to the large contrast in
refractive index between air and tissue. Although some amount of light scattering
is required to obtain scattering contrast, it reduces the direct light intensity from
deeper imaged structures, and gives rise to a diffuse background signal that does
not contain direct information from the sample. Thus, scattering reduces the sig-
nal to background ratio, and thus the effective imaging depth. As the background
signal is not suppressed in wide-field microscopy, this method has a very shallow
penetration depth of typical a few tens of micrometer. With the confocal gate, that
suppresses out-of-focus background signal, CM can go deeper up to about 60-80
µm in plant tissue [33]. Imaging deeper inside plant tissue requires either physically
slicing or optical clearing of the tissue. These methods are not only incompatible
with in-vivo imaging, they also require labour-intensive sample preparation follow-
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ing detailed protocols.
Point-scanning OCT can image deeper into scattering media than confocal mi-

croscopy. Similar to confocal microscopy, it uses a confocal gating to suppress
diffuse scattering light outside the focal area. In addition, OCT uses interference
gating to measure the travel distance of the scattered light. Light that scatters mul-
tiple times has a larger path length and will end up deeper inside the image. Thus,
especially the part of the image close to the surface will suffer less from diffuse
scattering light. However, the gas-filled cavities inside the leaves still strongly re-
duce the imaging depth, causing a haze of multiple scattered light that occludes the
image of deeper regions. Moreover, refraction and variation of OPL due to strong
variation in refractive index causes further distortion of deeper leaf structures in
the OCT image. These effects together reduce the imaging depth in plant tissue to
about two to three cell layers, up to about 100-140 µm.

The effect of the gas-filled pockets on the imaging depth can be reduced by
filling these pockets with a liquid that has refractive index close to that of leaf
tissue, such as perfluorcarbons [69] or water [33]. As it reduces the contrast in
refractive index of the tissue, it can be called an optical clearing method, though it
is less aggressive than most clearing methods and compatible with in-vivo imaging.
Filling the cavities with perfluorcarbons resulted in an increased imaging depth up
to 100-135 µm with confocal microscopy [69].

Obtaining a high resolution in 3D
One of the main goals of microscopic plant imaging is to study morphology and
interaction at the cellular level. While most optical microscopy setups have a suffi-
ciently high lateral resolution, in the order of 500 nm to 2 µm, the axial resolution
is a lot worse. To be able to image in 3D, the imaging method needs to have a
good optical sectioning ability. As we have seen, widefield microscopy has a very
limited sectioning ability, making it merely a 2D imaging method. CM has a better
optical sectioning ability and can thus be used for optical 3D imaging at cellular
level. However, for CM the sectioning ability is mainly achieved with a high NA,
which is more prone to optical aberrations. Moreover, such a high lateral resolution
is not always needed as it reduces the lateral field of view and the imaging speed.
LSFM obtains optical sectioning from the illumination with a light sheet. This is a
promising technique for microscopic 3D imaging, but requires access to the sample
from the side. Moreover, LSFM and most CM need fluorescence labeling.

OCT uses broadband light interference to create optical sectioning allowing for a
high axial resolution also with a low NA. With typical lateral resolutions of 5-20 µm,
it performs significantly worse than that of optical microscopy. To visualize cells,
small pathogen structures and subtle changes in the plant tissue, a higher resolu-
tion of about 1-3 µm is needed. This can be obtained by using shorter light wave-
lengths in the visible range and a higher NA together with depth of field extension.
Computational methods as discussed above may give an additional improvement in
resolution.

When using a higher NA, optical aberrations, i.e., the deviation from the spher-
ically focused wavefront, become more prevalent. They cause the PSF to broaden,
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transfer power from the main lobe to the side-lobes, or cause additional ringing
artifacts around the PSF [24, p.145-151]. Aberrations can be caused by non-ideal
lenses, poor optical design, or by inhomogeneity of the sample, the latter being the
hardest to correct. In contrast to widefield and confocal microscopy, OCT gives the
complex wavefield that can be used for computational aberration correction. Using
a method similar to refocusing, but now also including other aberrations than defo-
cus, much of the aberrations can be eliminated [70]. Yet, the aberration first needs
to be estimated, which can be done by, for example, optimization of the image
with an image-sharpness metric [70], using a guide star [71], or cross-correlating
subapertures [72].

Label-free imaging with sufficient contrast
For in-vivo or minimal invasive microscopic plant imaging, there is an increasing de-
mand for label-free imaging methods. Label-free means that the imaging is done
without relying on an artificially added label, whether it is a chemical compound
that binds to the structures of interest or a genetically expressed label in a trans-
genic plant or pathogen. Label free methods rely, for example, on (wavelength
dependent) scattering, transmission, refractive index differences, or autofluores-
cence properties of the natural plant tissue.

Fluorescence CM and LSFM need fluorescence in the target structures. Because
autofluorescence is not specific and is not present in all structures of interest, these
imaging techniques often use fluorescent labeling. While labeling allows for a high
level of specificity, in-vivo fluorescence labeling is not always possible or wanted.
Genetically transformed plant varieties that express targeted fluorescence are very
limited available, especially for varieties that are not model plants systems such as
Arabidopsis. Fluorescence labeling with chemical compounds is often destructive
and requires long and labour-intensive sample preparation. The same is true for
labeling with absorptive stains, such as Tryphan blue, which is usually combined
with optical clearing. Thus, there is a clear need for label free imaging.

OCT is a label-free imaging method based on scatterring from refractive index
differences in the medium and does not rely on fluorescence or absorptive stains.
However, OCT’s contrast mechanism also introduces extra challenges as all struc-
tures that scatter will be imaged, making OCT imaging rather unspecific. This makes
it harder to target specific structures or distinguish well between, for example, plant
cells and pathogen structure. Segmentation based on morphology can help in this
process, but segmentation of 3D data is challenging and requires good quality data.
Hence, OCT imaging of plants focuses more on bulk leaf properties, such as cell
layer thickness over a laterally averaged B-scan [73] or attenuation coefficient [74].

In the biomedical OCT imaging field, some promising methods for obtaining
functional contrast have been developed that may be applicable to plant imaging.
Most of these methods somehow exploit the change in signal over time when the
imaged tissue moves. These methods include quantification of flow speed with
Doppler [75] and dynamic light scattering [76] OCT, blood vessel and flow chan-
nel visualization with optical coherence angiography (OCA) [77], and pixel-level
frequency of motion contrast to create contrast based on the time-scale of cellu-
lar dynamics [78]. With spectroscopic OCT, the reflected OCT signal is split into
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smaller spectral bands, enabling 3D multi-spectral imaging at microscopic scale at
the expense of a reduced axial resolution [79, 80].

Few of these methods have yet been applied to plant imaging. The most note-
worthy example is biospeckle imaging [81, 82], which, similar to OCA, uses the
variance of the speckle signal in time as contrast mechanism. However, it has
mainly been limited to average biospeckle signal over a large area, rather than to
create contrast within an image. There is still a high potential of the other functional
imaging methods to improve specificity in plant imaging, especially if it would enable
quantification of physical properties of the plant that are not setup dependent.

1.4. Thesis outline
In this thesis we address imaging challenges for OCT applied to microscopic plant
imaging. In this way we make OCT better suited for plant phenotyping.

In chapter 2 we address the problem of the limited imaging depth caused by
high scattering from gas filled cavities. We significantly increase the imaging depth
in plant leaves by infiltrating them with water. We extent the imaging depth from
about 100-150 µm to the entire leaf cross-section of up to 300 µm. Moreover, we
quantify plant leaf refractive index and local leaf thickness.

Chapter 3 presents a computational method to improve the axial resolution in
OCT using the iterative adaptive approach (IAA). We show a factor 2.7 improvement
in the axial resolution in experimental data and up to a factor 10 for high SNR
simulation data. This can be used as building block to obtain a higher 3D resolution
for plant imaging with visible light OCT.

Chapter 4 discusses a high resolution OCT setup with a superluminescent diode
in the visible light range that has a relatively low bandwidth. Combining the method
that was developed in chapter 3 to improve the axial resolution with ISAM and
computational aberration correction for lateral resolution improvement, we obtain
single micrometer 3D resolution over a depth range that is much larger than the
original DOF. We apply this setup and method to perform high resolution 3D imaging
of plant tissue.

Chapter 5 applies dynamic OCT imaging, which is based on the temporal fre-
quency of the signal, to create label-free high contrast 3D images of plant tissue.
We demonstrate label-free visualization of downy mildew, a pathogen in lettuce, at
tissue level in 3D.

Chapter 6 concludes this thesis, discusses the contributions of this thesis to mi-
croscopic imaging of plants using OCT, and gives an outlook on promising directions
for further development of this field.
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morphology and leaf

thickness with optical
coherence tomography

Optical coherence tomography (OCT) can be a valuable imaging tool for in-
vivo and label-free digital plant phenotyping. However, for imaging leaves,
air-filled cavities limit the penetration depth and reduce the image quality.
Moreover, up to now quantification of leaf morphology with OCT has been
done in 1D or 2D images only, and has often been limited to relative mea-
surements. In this paper, we demonstrate a significant increase in the OCT
imaging depth and image quality by infiltrating the leaf air spaces with wa-
ter. In the obtained high-quality OCT images the top and bottom surface of
the leaf are digitally segmented. Moreover, high-quality en face images of the
leaf are obtained from numerically flattened leaves. Segmentation in 3D OCT
images is used to quantify the spatially resolved leaf thickness. Based on a
segmented leaf image, the refractive index of an infiltrated leaf is measured
to be 1.345± 0.004, deviating only 1.2% from that of pure water. Using the
refractive index and a correction for refraction effects at the air-leaf interface
we quantitatively mapped the leaf thickness. The results show that OCT is
an efficient and promising technique for quantitative phenotyping on leaf and
tissue level.

This chapter has been published as: Jos deWit, Sebastian Tonn, Guido Van den Ackerveken, and Jeroen
Kalkman, Quantification of plant morphology and leaf thickness with optical coherence tomography,
Applied Optics 59, 10304-10311 (2020).
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2.1. Introduction
With an increasing world population and growing biofuel consumption, the demand
for crops is expected to increase rapidly over the coming decades [1]. Plant sci-
entists use methods such as crop monitoring, environment control, early disease
detection, and plant breeding to improve both the quality and quantity of food
production. Plant phenotyping, i.e., the evaluation of the performance and ap-
pearance of a plant in its environment, is a crucial step in the development and
optimization of these methods. Traditional phenotyping, i.e., scoring of plants by
human raters based on visual inspection, is more and more replaced by digital
phenotyping, which aims to objectively and quickly quantify relevant plant traits at
low costs [2]. Imaging and computer vision approaches play a central role in dig-
ital phenotyping. While many studies focus on high-throughput phenotyping with
limited resolution and dimensionality, the long term goal is for 3D high-resolution
phenotyping for a deeper comprehension of plant phenotypes [3]. In this paper,
we show how optical coherence tomography (OCT) can contribute to plant trait
quantification in high-resolution phenotyping.

Leaves are the plant’s organs where sunlight is captured and carbohydrates are
synthesized, making them an important object for high-resolution plant phenotyp-
ing on organ, tissue and cellular scale [3]. Microscopic phenotyping of plant leaves
often needs fixation, clearing and staining, especially when the deeper mesophyll
layer and vascular tissue are investigated [4, 5]. Such extensive sample prepara-
tion not only reduces phenotyping throughput, but also makes it impossible to do
longitudinal in-vivo measurements. Longitudinal measurements, i.e., following the
same tissue in time, are important to study leaf dynamics such as leaf growth and
plant interaction with the environment [6, 7].

Tomographic methods such as magnetic resonance imaging (MRI) and high-
resolution X-ray computed tomography (HRXCT) are able to obtain 3D images of
leaf morphology in-vivo at resolutions of typically 30 µm for MRI and 10 µm for
HRXCT [8]. Drawbacks of these computed tomographic methods are their low
speed and high costs [9], as well as the trade-off between sample size and resolu-
tion [8].

Optical coherence tomography is developed for label-free in-vivo imaging deep
into scattering biological tissue [10]. OCT has been used to obtain 3D images of
plants with resolutions between 5 and 10 µm. Due to the combination of confocal
gating and coherence gating, multiply scattered light is largely filtered out and the
penetration depth becomes many times that of confocal microscopy. It has been
used to reveal plant anatomy [11, 12], detect plant diseases [13–17], study leaf
senescence [18] and investigate root growth dynamics [19]. Moreover, OCT is used
in post-harvest quality evaluation of agriculture produce [20].

Most OCT studies on (early) disease detection compared A-scans that were ob-
tained by laterally averaging flattened B-scans [13–16]. Pathogen induced cell
degradation results in a broadening of, or a changing distance between, peaks in the
average A-scan. This has been successfully used as a bio-marker for plant diseases.
Wijesinghe et al. quantified the average thickness of the palisade parenchyma layer
by dividing the optical path length (OPL) between the two peaks in the average A-
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scan through an assumed leaf refractive index [14, 15]. Other studies described
changes in the average A-scan in a mere qualitative way. Chow et al. used scat-
tering intensity as a measure for disease infection, but the values were given in
arbitrary units and are hence not transferable between setups [17]. Anna et al.
measured the attenuation coefficient of leaves as an indicator of senescence [18].
Additionally, they calculated texture parameters of gray level B-scans to quantita-
tively classify different stages of senescence.

However, all these studies demonstrate two major drawbacks. First, none of
these studies were able to clearly visualize the entire cross-section of a mature
leaf, including the opposite leaf surface, due to a limited penetration depth. Even
if signals are picked up from deeper regions, the signals that have a low signal-
to-noise ratio (SNR) are further deteriorated due to multiply scattered photons and
sample-induced aberrations. The relatively low penetration depth as compared to
other biological tissues is caused by the fact that leaves contain air-filled cavities.
At these air-tissue interfaces, strong scattering and refraction occur, giving rise to
the multiply scattered signal and sample-induced aberrations [21]. This effect can
be largely reduced by infiltrating the leaves with a liquid that has a refractive index
close to that of the leaf tissue. Infiltration of leaves with perfluorodecalin (PFD)
has been used to enhance the resolution and image quality in in-vivo confocal mi-
croscopy [22]. PFD has a low surface tension and thus infiltrates easily into the
leaf even under atmospheric pressure. Infiltration with PFD is done by soaking the
leaves for 5 minutes in the solution [23], which is difficult to apply on leaves still
on the plant. Water also can be infiltrated into leaves, by pressing the opening of
a water-filled syringe against the abaxial leaf epidermis and applying gentle pres-
sure, or by releasing air from leaves held underwater using a vacuum pump allowing
water to enter after the vacuum is gently released [24]. Syringe-based water infil-
tration takes a few seconds and the infiltrated leaves dry within an hour, returning
the leaf to its normal state. Moreover, water is available everywhere, significantly
cheaper than PFD and it is part of the natural environment of plants. Both PFD and
water are believed to have marginal physiological effects and thus infiltration with
these liquids is feasible with in-vivo imaging [22].

Second, the mentioned publications did not show quantification of 3D leaf mor-
phology and layer thickness. Current leaf quantification often yields relative val-
ues that cannot be translated into objective physical quantities. For example, the
measured OPL was not always transformed into physical thickness, and if done, a
literature value for water or plant cells was used. Moreover, most quantification
was based on laterally averaged A-scans that do not capture the full 3D shape.
This is mainly because of a lack of application of advanced image processing and
segmentation.

A particular morphological feature that is of interest is leaf thickness, which can
be important, for example, to accurately determine a plant’s biomass [25]. The
current methods to measure lateral resolved leaf thickness require extensive clear-
ing [5], complex and costly equipment [25], or a custom-build complex setup [26],
or give no accurate results [27]. OCT can be an attractive alternative method to
measure leaf thickness, especially when combined with a study of the internal leaf
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tissue morphology.
In this paper, we address the problems of limited penetration depth and lack of

quantification of 3D morphology in current OCT plant imaging. First, we demon-
strate that water infiltration successfully extends the penetration depth and gives
higher quality images. Second, we use these higher quality images in combination
with image processing and segmentation to quantify lateral resolved leaf thickness.
Compared to alternative methods, OCT is a simple and cost-efficient tool for mea-
suring lateral resolved leaf thickness.

2.2. Methods
2.2.1. Experimental OCT setup
Themeasurements are performed with a high-resolution spectral-domain OCT setup
(Ganymede II HR, Thorlabs, Germany), that has a super-luminescent diode light
source with a center wavelength of 900 nm and a full width half maximum (FWHM)
bandwidth of 120 nm. The axial resolution is experimentally measured to be 3.0 µm
in air, which corresponds to 2.2 µm in tissue. The spectrometer covers a bandwidth
of 220 nm over 2048 pixels, giving a spectral sampling resolution of 0.11 nm and an
axial imaging range of 1.87 mm in air. The system is operated with an A-scan rate
of 36 kHz, enabling real-time acquisition of B-scans and sub-minute acquisition of
volume scans. The objective lens (OCT-LK4-BB, Thorlabs, Germany) has a working
distance of 41.6 mm and a maximum lateral field of view of 16 mm×16 mm, though
in this research smaller scan areas were used to reduce the memory usage. The
lateral resolution is experimentally determined with a knife-edge imaging a step
response to have a FWHM of 6 µm. The raw spectral data is obtained with ThorIm-
age software (version 5.2.0). The B-scans consist of 1024 A-scan lines over a width
of 3 mm in 𝑥-direction, corresponding to a scan-line every 3 µm. Every A-scan is
averaged 8 times to improve the signal-to-noise-ratio (SNR). The 3D scans consist
of 512 × 512 scan lines over an area of 3 × 3 mm2. The resulting separation of 6
µm between the scan-lines, corresponds well to the lateral resolution resulting in a
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Figure 2.1: The SD-OCT setup that was used for this study. (a) The setup in action and (b) a schematic
overview of the refractive index measurement. The red dashed boxes indicate the area of the image.
𝑧0 and 𝑑 are physical distances, while Λ is the distance in OPL.
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well-sampled volume. One of the limitations of volume OCT imaging is the size of
the data sets that are created. For the 3D acquisition with 2048 pixels per A-scan
and 2 bytes per pixel (for 12 bit numbers), the raw spectral data has a size of 1 GB.
To limit the data size, only two averages per A-line are made, giving a raw spectral
data size of 2 GB. The scan time of 512 × 512 × 2 A-scans is 15 s, which gives no
practical limitation for application in plant imaging.

The raw spectral data is processed in Python 3 to obtain high-quality images.
The processing consists of subsequently the subtraction of the reference spectrum,
interpolation to an equally spaced grid in wavenumber domain, apodization with
a Hanning window, correction for dispersion mismatch, and an inverse discrete
Fourier transform. The numerical correction for dispersion mismatch between the
reference and sample arm is done with a fourth-order polynomial, whose coeffi-
cients are obtained from a reference measurement of a single reflector [28]. After
processing, the A-scans belonging to the same scan line are complex averaged
to improve the SNR [29]. For segmentation, the absolute value of the complex
averaged scan lines is used directly. For displaying in images this amplitude is sub-
sequently converted to a dB scale by dividing through the maximum, taking the
10-base logarithm, and multiplying with 20.

2.2.2. Plant material
Measurements are taken on a fully developed leaf of a mature 4 week old Arabidop-
sis plant of accession C24 [30]. The leaf is infiltrated by pressing the mouth of a
syringe to the abaxial side of the leaf and gently pushing the water into the leaf
until it is completely infiltrated, visible because of the induced translucence. The
infiltrated leaf dries within an hour and the physiological effects of infiltration on
the leaf are minimal. After drying, the area of infiltration is not recognizable by the
naked eye, nor in the OCT scan. This allows for in-vivo imaging of the same area of
a leaf longitudinal, i.e. at different times during growth. The OCT measurements
are taken from the adaxial (top) side of the leaf. The leaf can remain on the plant,
as the whole plant is placed below the scan-head as shown in Fig. 2.1 (a). The
sample is placed below the zero-delay with an extra offset to separate the image
from auto-correlation artifacts.

2.2.3. Surface segmentation
For quantitative analysis of the morphological traits of plant leaves, the location of
the top surface and bottom surface of the leaf are segmented.

The segmentation starts with an OCT cross-sectional image (Fig. 2(a)), where
the signal from the entire leaf is well above the noise level. Thresholding is applied
to obtain a rough segmentation of the leaf. The threshold is taken sufficiently low
to capture the weaker reflections from the bottom surface and the places where the
local normal of the top surface of the leaf is tilted with respect to the optical axis.
This results in the segmentation 𝑀𝑠, as shown in yellow and green in Fig. 2.2(b).

The segmentation by thresholding includes many high-intensity side lobes, vis-
ible as the light green lobes on the surface in Fig. 2.2(b), annotated with arrow sl.
To remove these side-lobes, an additional requirement is imposed that the second-
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Figure 2.2: Illustration of the steps in surface segmentation to obtain leaf thickness. (a) A cross-sectional
OCT image and the results of the two steps in image segmentation. (b) The segmentations resulting
from thresholding (𝑀𝑡, green), from taking a negative second derivative (𝑀𝑠, light blue) and the overlap
of both (yellow). The arrows point to a soil particle (s), side lobes of the top reflection (sl) and noise
above the threshold (n).

order Gaussian derivative (𝜎 = 3 pixels) along the axial direction should be negative.
This negative second derivative filter (𝑀𝑠, light blue and yellow) effectively acts as
a local maximum filter, discarding the band before the peak positions of the top and
bottom surface. It successfully removes the side-lobes and increases the accuracy
of the segmentation of mainly the top surface.

Subsequently, the first and last non zero pixels for each A-scan in this segmen-
tation are taken as the first estimates for respectively the top and bottom surface,
indicated with the red line in Fig. 2.2(a). Higher intensity noise (indicated with n)
and structures like leaf hairs or small soil particles (indicated with s) result in outliers
in these first surface estimates. To remove the outliers a median filter is applied
with a 7 pixel radius circular footprint. After median filtering, the bottom surface
is smoothed by a Gaussian kernel with a sigma of 5 pixels. These filters result in
a smooth and accurate segmentation for the top and bottom surface, as indicated
with the white dashed line. Implemented with Python operating in Spyder on a
desktop (Intel Xeon W-2223 CPU), the surface segmentation of the 512x512 scan
lines volume took 24 s, of which 15 s spent on calculating the Gaussian derivative
filtered image.

2.2.4. Leaf refractive index measurement
Optical coherence tomography measures axial distances in optical path length (OPL).
Conversion between OPL and depth is done by dividing through the refractive index
of the medium, in this case, the refractive index of infiltrated leaf tissue.
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We quantify the refractive index of an infiltrated leaf with a method similar to
the in-vitro method of Tearney et al. [31]. A water-filled cuvette is imaged twice:
first with the leaf placed in a cuvette close to the back surface, then after the
leaf is removed while the probe and cuvette remain in their position, as shown in
Fig. 2.1(b). The displacement of the wall of the cuvette between the two OCT
images is equal to the difference in OPL between light going through the leaf tissue
and light going through water. The relative difference of the refractive index can
be calculated for each lateral position with

𝑛𝑙 − 𝑛𝑤
𝑛𝑤

= ΔΛ
Λ𝑙 − ΔΛ

, (2.1)

in which 𝑛𝑙 and 𝑛𝑤 are the refractive indices of respectively an infiltrated leaf and
water, Λ𝑙 is the thickness of the leaf in OPL and ΔΛ is the displacement of the cuvette
wall in OPL, as indicated in Fig. 2.1(b). Although this method does not account for
refraction at the leaf surface, the resulting error will be insignificant as the difference
in the refractive index is expected to be small. For fully automated refractive index
measurement, both the leaf and cuvette surface are segmented. Λ𝑙 is obtained
from the surface segmentation as described in Section C. The location of the cuvette
wall is obtained for each A-scan by fitting a Gaussian to a manually selected 100
µm wide axial region around the cuvette wall. The obtained peak locations are
subsequently median filtered with a 25 pixel window to remove outliers, and then
Gaussian filtered with a sigma of 15 pixels to obtain a smooth curve. For each
lateral position equation (2.1) is evaluated. The final refractive index is obtained by
averaging over all lateral positions.

2.2.5. Leaf thickness measurement
For each lateral position, the distance in OPL between the top and bottom surface is
divided by 𝑛𝑙 to obtain the physical distance 𝑙 between the top and bottom surface.
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Figure 2.3: (a) The geometry and parameters for calculating the correction factor. The scan beam falls
in in vertical direction and the leaf is tilted with an angle 𝜃𝑖 with respect to the horizontal. 𝑥 and 𝑧
are respectively the horizontal and vertical coordinate in the images. (b) The correction factors for leaf
tilting angles 𝜃𝑖 between 0∘ and 45∘, using 𝑛𝑙 = 1.345.
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This distance 𝑙 is measured along the beam path, thus it will be larger than the leaf
thickness 𝑑 for an oblique leaf surface, as indicated in Fig. 2.3. Taking refraction
into account and assuming that the leaf can locally be considered as having two
parallel surfaces, the true leaf thickness 𝑑 can be obtained with

𝑑 = 𝑙√1 − (sin𝜃𝑖𝑛𝑙
)
2
, (2.2)

where 𝑑 is the local thickness measured perpendicular to the top surface, 𝑙 is the
local thickness measured as the distance in the A-scan between the top and bottom
reflection, 𝜃𝑖 is the angle of the leaf surface with respect to the optical axis, and 𝑛𝑙
the leaf refractive index, as shown in Fig. 2.3(a). Fig. 2.3(b) shows the values of
the correction factor 𝑑/𝑙 for incident angles up to 45∘. The local 𝜃𝑖 is calculated by
taking the inverse tangent of the Gaussian gradient magnitude of the top surface
with a sigma of 10 pixels (60 µm). The leaf thickness 𝑑 is calculated with Eq. (2.2).

2.2.6. En face OCT images
With the segmented top surface en face images at a fixed depth below the top
surface are made. The leaf in the C-scan is numerically flattened by shifting the
leaf top surface to the first pixel for each A-scan. From each depth of interest, a
slice in the transverse direction is taken and displayed as an en face image. The
reference intensity for conversion to the dB scale is the maximum value of the entire
data set.

2.3. Results
2.3.1. The result of leaf infiltration on the OCT imaging depth
Figure 2.4 shows an image of the same leaf before and after infiltration. The images
are not taken from exactly the same position as the plant moved during infiltration.
In both images, the adaxial epidermal cells are clearly visible, as well as the mes-
ophyll cells just below the epidermal cells. At some places, the strong reflections
from the air-leaf interface give side-lobes that partly obscure the epidermal cells.
Without infiltration, the image gets blurry after penetration of about 100 µm OPL.
As this leaf is relatively thin, the abaxial side can be seen from a drop of intensity
after about 200 µm OPL, but the transition is rather vague and its location far from
precise. Moreover, the B-scan area crosses the midrib around the center of the
image, but this is not visible in the image.

The relatively poor image quality in the deeper regions of the non-infiltrated leaf
can be understood from the presence of air-filled cavities that the plant uses for
gas exchange. These cavities with a refractive index that is much lower than that of
leaf tissue cause aberrations and refraction of the beam such that the back-reflected
signals are disturbed and, if collected, mapped to the wrong location. The many
air-tissue interfaces also cause a lot of multiple scattering, which further decreases
the visibility of deeper-lying structures in the leaf. Multiple scattering also gives
rise to the haze, visible at the bottom of the leaf, which corresponds to the longer
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path lengths of multiply scattered light [32]. This further obscures the abaxial leaf
surface in the image.

Filling these cavities with water by infiltrating the leaves makes them much
more transparent to the OCT signal, thereby reducing sample-induced aberrations
and multiple scattering. In figure 2.4(b), cells are visible in the deeper regions of
the cell, and also the vascular tissue in the midrib can be clearly distinguished. The
clearest difference between the images is that with infiltration the abaxial side of
the leaf is clearly and accurately imaged. Moreover, the shape of the midrib on the
abaxial side can be clearly distinguished. The comparison of these images shows
the huge benefit of infiltration for OCT imaging of plant leaves, making it possible
to clearly image the full cross-section of the leaf in-vivo, and also quantifying leaf
thickness as a function of lateral position. The latter we will explore in the next
subsection.

2.3.2. Leaf refractive index measurement
Figure 2.5(a-b) shows a B-scan of a water-filled cuvette with and without an infil-
trated leaf. The white arrows point to an auto-correlation artifact of the cuvette
wall, which is sufficiently separated from the relevant features to enable accurate
segmentation. The vertical stripes in the images are probably caused by aliasing of
reflections of a surface of the cuvette outside the axial range. These artifacts do,
however, not cause any problems in the segmentation as their intensity is well be-
low the intensity of the leaf and the cuvette wall. The segmented leaf and cuvette
surface are indicated with a white and red dashed line respectively. The average
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Figure 2.4: B-scan images of the central part of an Arabidopsis leaf. (a) An image before infiltration and
(b) an image after infiltration. The scan area of (a) crosses the midrib about halfway the image. In (b)
the midrib and vascular tissue are clearly visible. Contrary to (a), the abaxial side of the leaf is clearly
visible in (b). Annotations: e: epidermal cell, m: mesophyll cell, vb: vascular bundle, mr: midrib, ad:
adaxial side and ab: abaxial side.
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difference in OPL of the cuvette ΔΛ = 2 µm, which corresponds to 1 pixel. For
each lateral position equation (2.1) is evaluated and the result of it plotted in Fig.
2.5(c). The average relative difference in the refractive index between infiltrated
leaf tissue and water is 1.2%. This relative difference is small enough to justify the
neglect of refraction at the leaf surface. Using the literature value 𝑛𝑤 = 1.329 at
the center wavelength of the OCT setup (𝜆𝑐 = 900 nm) [33], we obtain a refractive
index for infiltrated leaf tissue of 𝑛𝑙 = 1.345±0.004. The variation in the measured
refractive index is caused by a combination of both uncertainty in measurement
and segmentation, and natural variation of leaf tissue.

2.3.3. Leaf thickness
The leaf thickness is determined for a section of the leaf around the midrib, indicated
with the red box in Fig. 2.6(a). Fig. 2.6(b) shows the segmented top and bottom
surface in 3D. The midrib is clearly visible in the segmentation of the bottom surface.
The peak at the right side is an artifact caused by the presence of a trichome (a leaf
hair). The correction factor 𝑑/𝑙 as defined by (2.2) is evaluated and visualized in
Fig. 2.6(c). For the major part of the surface, this factor is close to 1; at the lower
half of the image, it decreases to values down to 0.93 due to the slope of the surface.
Around the leaf hair, the gradient magnitude becomes much larger, resulting in
local correction factors up to 0.83. From the segmentation, the correction factor
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Figure 2.5: (a) B-scan image of an infiltrated leaf in a cuvette and (b) the image after the leaf has been
removed while the setup and cuvette remained untouched. From the segmentation of the leaf surface
and the cuvette surface, the relative refractive index difference is calculated per lateral position using
(2.1) and plotted in (c). The mean relative difference Δ𝑛/𝑛𝑤 is indicated with the red dashed line and
the green dashed lines indicate the single standard deviation borders.
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and the measured refractive index 𝑛𝑙 = 1.345, the lateral resolved leaf thickness
is determined and visualized in Fig. 2.6(d). The midrib is clearly visible due to its
large thickness ranging from 260 µm at the right to 366 µm at the left of the image.
Moreover, the veins can be distinguished with a thickness of around 180 µm, while
the lamina or leaf blade has a thickness varying between 110 µm and 150 µm. Two
artifacts, caused by a soil particle and leaf hair, are indicated with arrows.

2.3.4. En face images
Using the surface segmentation, en face images are obtained at different depths
with respect to the top surface of the leaf. This is shown in the single OCT cross-
section in Fig. 2.7(a), with the lines indicating the depths in OPL of the en face
images (b-f). In the cross-sectional image, the vascular bundle inside the midrib is
clearly visible and has a diameter of about 120 µm.

Figure 2.6: (a) The RGB image with the scan region indicated with the red box, (b) the segmented
top and bottom surface, (c) the correction factor for tilted surfaces taking refraction into account, and
(d) the lateral resolved leaf thickness assuming 𝑛𝑙 = 1.345. The arrows indicate small artifacts in the
segmentation due to a soil particle (s) and a leaf hair (h). The leaf hair is visible as the peak on the
right side of (b).
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Figure 2.7: En face images of the leaf at a fixed distance in OPL from the adaxial surface, generated from
the same data that is used in figure 2.6. The lines in (a) indicate the depth of the images in (b-f). (b)
OCT surface intensity showing the cuticle and the top surface of the epidermal cells. The white dashed
line indicates the location of the cross-section (a). (c) The image at 16 µm depth, which is located in
the epidermal layer. (d) The image at 73 µm depth, which is located in the palisade mesophyll layer. (e)
The image at 117 µm, showing the vascular bundles of the midrib and veins, and the spongy mesophyll
layer between the veins. Several vascular bundles are annotated. (f) The image at 238 µm, which is
below the leaf at the lamina or leaf blade, while it still contains tissue around the midrib and leaf veins.
All images are plotted on a scale between 0 and -65 dB, where 0 refers to the maximum value in the 3D
data set. The distance from the surface and 𝑧 in (a) are given in OPL. Annotations: e: epidermal cell,
h: leaf hair, s: soil particle, vb: vascular bundle, and v: vein.
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The first layer (Fig. 2.7(b)) corresponds to the cuticle and the top of the epider-
mal cells. The air-tissue interface gives strong reflections, resulting in high intensi-
ties in this image. The structure in the image is an indication of the local orientation
of the leaf surface. A surface normal along the axis of the OCT beam gives a high-
intensity signal back on the detector. The reflected intensity decreases with an
increasing angle. The bottom 0.5 mm area has a lower average intensity as the
leaf surface is sloped downwards there. In the right bottom, a leaf hair is visible,
which caused an artifact in the top surface segmentation. Figure 2.7(c) is located at
the epidermal layer, and indeed many epidermal cells can be distinguished, better
visible in the inset. The typical width of the lobes of the cells is 40 to 50 µm. Two
bright dots contain the high-intensity reflections from grains of soil, and also the
leaf hair is still visible. The epidermal cells are less well visible in the lower part,
probably due to the sloped surface. Figure 2.7(d) shows the palisade mesophyll
layer, and has a distinctly different texture than the epidermal layer. The lateral
size of the cells is smaller, typical 20-30 µm, giving a finer texture. This layer has
a more open structure at the midrib and also at some of the larger veins. When
we go deeper to 117 µm (OPL) into the leaf, the vascular bundles can be seen in
the midrib and the veins. The location of these vascular bundles corresponds well
with the location of veins in Fig. 2.6(d). The mesophyll cells in the lamina areas
look slightly more open than those in Figure 2.7(d), which indicates that this slice is
indeed through the spongy mesophyll with many cavities for gas exchange and the
one in (d) is located in the palisade mesophyll layer. The cavities have an irregular
structure, but the width along their smallest dimension is typical 50-70 µm, and up
to 90 µm close to the midrib. When taking a slice below the bottom surface of the
lamina regions, the veins and the thicker leaf at the edges of the midrib are clearly
visible. The signal at the right bottom is due to a locally thicker surface as can
be seen from Fig. 2.6(b). Cross-section images show that this thickening appears
both at the top and the bottom, which may be related to the leaf hair that is in its
vicinity.

2.4. Discussion
This work presents water infiltration as a method to increase the OCT imaging
depth and image quality of plant leaves. In addition, we show quantification of the
refractive index of leaves and the lateral resolved leaf thickness.

The key advantages of OCT for quantifying lateral resolved leaf thickness are
that it is fast, minimally invasive, compatible with label-free in-vivo imaging, that it
gives leaf thickness and internal leaf morphology at once, and at relatively low cost
using commercially available systems. The results presented in this paper show
that OCT can be successfully used to quantify spatially resolved leaf thickness and
that it provides further insight into the underlying leaf morphology.

A disadvantage of our method is that infiltration locally changes the leaf en-
vironment. As water is added to the leaf, this method may be less suitable for
longitudinal drought monitoring studies. However, when the time between mea-
surements is longer than the drying time of the leaf, the physiological effects of
infiltration will probably be limited. Based on the presented results, it cannot be ex-
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cluded that infiltration has any effect on the leaf thickness. However, this effect will
be less than with optical clearing and be the same for different plants or leaf areas.
Therefore, it will barely limit the applicability for plant studies. Syringe infiltration
sometimes bruises the leaf on the small ring where the syringe mouth is pressed
on the leaf. This can be avoided by using a vacuum pump or PFD infiltration, which
is expected to give similar imaging results.

Sample-induced beam deviation and systematic errors in the segmentation may
be a source for systematic errors or inaccuracy of the leaf thickness measurement.
Therefore, the proposed method to compensate for beam refraction is essential to
obtain an accurate result with an oblique leaf surface. Even with this method, the
limited axial imaging range and the possibility of image warping still require the
orientation of the leaves to be as close to horizontal as possible.

The accuracy of the leaf thickness quantification depends on the quality of the
surface segmentation. In this work, we present a simple but robust segmentation
method that gives good results, excluding side lobes at the top surface that would
otherwise have caused a systematic error towards a thicker surface. Structures on
the surface, like leaf hairs, cause errors in the segmentation. These artifacts can
be removed by more aggressive filtering, at the expense of losing spatial detail.
Smaller leaf hairs, of plants such as tomato or lettuce, will be largely filtered out by
the proposed median filter. Moreover, leaf hairs can be a relevant feature of a plant’s
phenotype and OCT is very suitable to quantify both their surface density and 3D
shape. The speed and accuracy of the segmentation may be improved by applying
more advanced segmentation methods, for example based on deep-learning.

Our approach can also be applied to other plant species with different leaf sizes.
Using syringe infiltration, we successfully imaged full cross-sections, including the
bottom surface, of lettuce, tomato, dandelion and ribwort plantain leaves. How-
ever, plant leaves with many fibers, such as willow or reed leaves, were difficult to
infiltrate with a syringe. Moreover, the attenuation of these leaves is higher. There-
fore, our method worked less well for such leaves. We obtained the best imaging
results with fresh and green leaves, where we were able to image full cross-sections
for leaf thicknesses up to 350 µm.

For very thick or highly scattering leaves, infiltration may not give enough in-
crease in penetration depth to accurately image the other side of the leaf. The
penetration depth can be increased by using an OCT system with a larger center
wavelength, at the expense of a lower imaging resolution. Dual-side view OCT
(DSV-OCT) can be used to measure the lateral resolved thickness of opaque ob-
jects, and thus even of non-infiltrated leaves [34]. Compared to the dual confocal
laser profiler [26], DSV-OCT also gives an image of the internal leaf morphology by
fusing the images from both sides. However, it has the same disadvantages as the
dual confocal laser profiler, namely, it is a custom-build complex setup and needs
close access to both sides of the leaf.

Our OCT images have the potential for quantifying many more morphological
features, such as individual cells and vascular bundles. Segmentation methods to
extract such features from 3D confocal microscopy images [35–37] can be adapted
for the use on OCT plant images. This may enable further quantification of plant
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leaf morphology and dynamics. Moreover, our leaf thickness measurements can
be applied to larger-scale plant studies. Those studies include imaging on whole
leaves, comparing leaf thickness of different varieties, and longitudinal studies on
the development of leaf thickness during plant growth. Hence, we foresee a great
potential of our technique for quantification of 3D leaf morphology in digital phe-
notyping.

2.5. Conclusion
With this work, we show that water infiltration of plant leaves significantly improves
the penetration depth and image quality for OCT plant imaging. With water infil-
tration, we imaged entire cross-sections of plant leaves, measured their refractive
index, and successfully quantified the lateral resolved leaf thickness with high ac-
curacy.

Data Availability
Data sets and analysis code is available at a Zenodo repository [38].
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3
Fast and accurate

spectral-estimation axial
super-resolution optical
coherence tomography

Spectral-estimation OCT (SE-OCT) is a computational method to enhance the
axial resolution beyond the traditional bandwidth limit. However, it has not
yet been used widely due to its high computational load, dependency on
user-optimized parameters, and inaccuracy in intensity reconstruction. In
this study, we implement SE-OCT using a fast implementation of the itera-
tive adaptive approach (IAA). This non-parametric spectral estimation method
is optimized for use on OCT data. Both in simulations and experiments we
show an axial resolution improvement with a factor between 2 and 10 com-
pared to standard discrete Fourier transform. Contrary to parametric meth-
ods, IAA gives consistent peak intensity and speckle statistics. Using a re-
cursive and fast reconstruction scheme the computation time is brought to the
sub-second level for a 2D scan. Our work shows that SE-OCT can be used
for volumetric OCT imaging in a reasonable computation time, thus paving
the way for wide-scale implementation of super-resolution OCT.

This chapter has been published as: Jos de Wit, Kostas Angelopoulos, Jeroen Kalkman, and George-
Othon Glentis, Fast and accurate spectral-estimation axial super-resolution optical coherence tomogra-
phy, Optics Express 29, 39946-39966 (2021)
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3.1. Introduction
Since its first introduction in 1991 [1], optical coherence tomography (OCT) has
been developed towards an effective and widely used method for high resolution
non-invasive, non-contact and label-free imaging of tissues, fluids, and other scat-
tering media. Especially the introduction of Fourier domain OCT (FD-OCT) with its
superior signal-to-noise ratio (SNR) has accelerated the application of OCT imaging
as it enables real-time imaging with high resolution and high frame-rate. Currently,
it is an established modality in medical imaging [2], and is also applied in other fields
such as material science [3, 4], artwork examination [5, 6] and plant imaging [7].

For imaging small details, the spatial resolution of the imaging system is one of
the most crucial aspects. Improving resolution enables imaging of smaller sample
structures and more accurate quantification of sample morphology. In OCT, the
resolution in the lateral and the axial direction are decoupled. While the lateral
resolution depends on the focusing optics and the wavelength, the axial resolution
is determined by the temporal coherence of the light source, which is inversely
proportional to the source bandwidth. Therefore, improving the lateral and axial
resolution require a different approach and are thus often treated separately. In
the current work, we focus on improvement of the axial resolution.

In FD-OCT, the sample reflectivity profile along a scan line is usually estimated
from the inverse discrete Fourier transform (DFT) of the spectrum, i.e., the interfer-
ence spectrum and the reflectivity profile form a Fourier transform pair. This limits
the (amplitude based) axial resolution to the coherence length of the source, which,
for a Gaussian spectrum depends on the center wavelength 𝜆𝑐 and source band-
width Δ𝜆 as 𝑙𝑐 =

2 ln2
𝜋

𝜆2𝑐
Δ𝜆 . Therefore, OCT setups have been developed using light

sources with an ultra-broad bandwidth of up to 200 nm operating at wavelengths
typically around 800 nm. Using these approaches axial resolutions up to about a
single µm have been achieved [8, 9]. However, light sources with an ultra-broad
bandwidth are not only difficult to build, their implementation also complicates the
optical design of the OCT system. For swept-source OCT (SS-OCT), the source
bandwidths are limited due to the limited bandwidth of gain materials and com-
plexity of combining different gain materials [10]. For large bandwidth spectral
domain OCT (SD-OCT) the spectrometer performance is the bottleneck, giving a
significant intensity roll-off even when properly designed. Moreover, for any ultra-
large bandwidth OCT system chromatic aberrations, sample induced dispersion,
and wavelength-dependent scattering properties can be hard to compensate for.
Another strategy to improve the axial resolution is to use short wavelengths reach-
ing into the visible light range [11]. However, in the blue to green wavelength
light range, available superluminescent diodes (SLDs) have a narrow bandwidth
and ultra-high resolution cannot be achieved. Therefore, there is a need to over-
come this traditional resolution limitation and provide a high axial resolution with a
limited source bandwidth.

Early computational methods for improving the axial resolution of OCT were
based on classic deconvolution techniques [12, 13], with the Wiener filtering and
the Lucy-Richardson method being the most notable examples, [14–17]. However,
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the improvement in the axial resolution achieved by those methods is either limited
or obtained at the cost of side effects such as side-lobe or noise enhancement. A
significant improvement in axial resolution was obtained with modulated deconvo-
lution [18]. However, this method requires careful calibration of multiple kernels.

High-resolution spectral estimation (SE) techniques, that originate from the field
of radar and telecommunication signal processing [19–23] have been used to im-
prove the axial resolution in OCT by using reconstruction methods alternative to
the discrete Fourier transform. The frequencies of the interferograms that are
measured in FD-OCT correspond to depths of reflection. SE techniques estimate
these frequencies with much higher precision than what can be obtained with the
conventional DFT, thus effectively improving the axial resolution. Moreover, res-
olution improvement goes together with excellent side-lobe suppression, yielding
high-quality images. Spectral Estimation OCT (SE-OCT) has been able to obtain an
improvement in axial resolution with a factor up to 4.7 [21].

Although SE-OCT has shown promising results, there are at least three major
limitations that obstruct its usage in the mentioned application areas: the large
computational costs, the dependency on user-optimized parameters, and the in-
accuracy in reconstructed intensity. Widescale application of SE-OCT techniques
would require close to real-time B-scan processing, something that is currently not
achieved. Based on reported running time and on the timing of shared code, typ-
ical computation times for a single B-scan range from several minutes [21, 22] to
even hours [23]. Parametric methods only yield accurate results when the model
sufficiently fits the data and parameters are well chosen. Optimal parameters often
depend on the OCT setup and imaged sample, thus requiring tedious parameters
optimization for each new application [19, 22]. Even for optimized parameters,
misfits between the model and data can cause image artifacts in the results. For
example, with the auto-regressive (AR) method, as proposed by Liu et al. [21],
the estimated signal intensity is fluctuating and not proportional to the true inten-
sity of back-scattered light, and spurious peaks appear in the images when a high
model order is chosen. Similar problems are observed with the maximum entropy
method [19] and the Prony method [20]. Other applied SE methods assume a
high level of sparsity, thus only yielding accurate results for relative sparse sam-
ples [20, 23].

Non-parametric methods based on data-adaptive filter-banks, such as Capon [24],
Amplitude and Phase EStimation (APES) [25] and the more recent Iterative Adaptive
Approach (IAA) [26] form an attractive alternative for parametric spectral estima-
tion methods [27]. These non-parametric methods provide spectral estimations
with high resolution and strong suppression of side-lobes. Motivated by the recent
advances in non-parametric high-resolution spectral analysis, we propose the use
of IAA [26] for the improvement of the axial resolution and image quality in the
SD-OCT imaging while avoiding the mentioned limitations of computation costs, de-
pendency on model parameters, and image artifacts. As a non-parametric method,
IAA does not require the data to be described by a parametric model, so it does not
suffer from a model-data misfit. The computation cost is strongly reduced by us-
ing our earlier developed computationally efficient implementation of IAA [28, 29].
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Additionally, we further reduce computation cost by implementing this algorithm
recursively in the lateral direction [30] and limiting the axial reconstruction range
to the region of interest, yielding sub-second reconstruction times for a B-scan.
With this computational efficient IAA, we aim to make SE-OCT applicable to im-
prove axial resolution in the many application areas where physical accuracy and
reconstruction speed are necessary.

3.2. Theory
3.2.1. The Fourier-domain OCT signal model
The OCT interference signal, i.e., the signal with the constant reference intensity
(DC) term, auto-correlation terms, and constant pre-factors omitted, is in Fourier-
domain OCT described as [31]

𝐼(𝑘) = 𝑆0(𝑘)∫
∞

−∞
(𝑎(𝑧)e−𝑖2𝑘𝑧 + 𝑎∗(𝑧)e+𝑖2𝑘𝑧)d𝑧, (3.1)

where 𝐼(𝑘) is the interference intensity as function of wavenumber 𝑘 = 2𝜋/𝜆, 𝑆0(𝑘)
is the source intensity spectrum and 𝑎(𝑧) is the reflectivity at depth 𝑧, which is the
single pass depth measured from the zero-delay position. The expression can be
rewritten to

𝐼(𝑘) = 𝑆0(𝑘)∫
∞

−∞
�̃�(𝑧)e−𝑖2𝑘𝑧d𝑧, (3.2)

where �̃�(𝑧) = 𝑎(𝑧)+𝑎∗(−𝑧), is the symmetric reflectivity function. The integral can
be interpreted as the Fourier transform of �̃�(𝑧), hence the reconstruction of �̃�(𝑧)
could be interpreted as an estimation of the frequency spectrum of 𝐼(𝑘)/𝑆0(𝑘). This
reconstruction is commonly obtained using an inverse Fourier transform of 𝐼(𝑘) as
shown in Fig. 3.1(a), leading to a convolution of the true reflectivity �̃�(𝑧) with the
inverse Fourier transform of 𝑆0(𝑘), which thus acts as an axial point spread function
(PSF).

To set-up the OCT imaging process in the discrete domain we consider the
interference signal measured at 𝑁 discrete wavenumbers 𝑘𝑛, where 𝑁 is nor-
mally the number of pixels on the spectrometer camera. Spectrally normalizing
this discrete interference signal results in an 𝑁 × 1 data vector y, with elements
𝑦𝑛 = 𝐼(𝑘𝑛)/𝑆0(𝑘𝑛) [20, 21]. The depth 𝑧 can be discretized to 𝑀 uniformly spaced
depth locations as

𝑧𝑚 = {
2𝑧max

𝑚
𝑀 , 0 ≤ 𝑚 < 𝑀

2
−2𝑧max

𝑀−𝑚
𝑀 , 𝑀

2 ≤ 𝑚 ≤ 𝑀 − 1 ,

where 𝑧max = 𝜋/(2 ⋅ 𝛿𝑘) follows from the sampling interval 𝛿𝑘. Denoting the dis-
cretized reflectivity 𝑎(𝑚) = �̃�(𝑧𝑚), we can write the data vector of the OCT spec-
trum y as

y ≈
𝑀−1

∑
𝑚=0

𝑎(𝑚)f𝑚 + 𝜂, (3.3)
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∞
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Figure 3.1: Overview of OCT reconstruction with (a) the conventional DFT-based approach and (b) the
iterative adaptive approach (IAA).

where 𝜂 is an 𝑁 × 1 noise vector, and

f𝑚 ≜ [ 1 e−𝑖
2𝜋𝑚
𝑀 … e−𝑖

2𝜋𝑚
𝑀 (𝑁−1) ]

𝑇
(3.4)

is an 𝑁 × 1 vector with corresponding Fourier components. Superscript (.)𝑇 stands
for the transpose operator.
For negligible or uncorrelated (white) noise 𝜂, 𝑎(𝑚) can be estimated as the solution
of a least squares data fitting problem of the form [27]

�̂�(𝑚) = argmin�̂�(𝑚)‖y− �̂�(𝑚)f𝑚‖2, 𝑚 = 0, 1, … ,𝑀 − 1 , (3.5)

with ‖.‖2 denoting the 𝓁2-norm. The solutions �̂�(𝑚) of Eq. 3.5 are given by the
inverse DFT of y, increased in spatial sampling by zero-padding y when 𝑀 > 𝑁.
This is the regular OCT reconstruction method as indicated in Fig. 3.1(a), with an
additional spectrum normalization. Spectral reshaping with a smoother window
may be applied prior to DFT to reduce side-lobes at the cost of axial resolution.
Hereafter, for reasons of simplicity, we drop out the ̂(.) symbol from variables that
represent estimators, thus 𝑎(𝑚) means an estimate of the sought variable.

3.2.2. Iterative adaptive approach method
The iterative adaptive approach (IAA) is a high-resolution, non-parametric spec-
tral estimation method [26, 32], proposed in the area of radar signal processing.
Figure 3.1(b) gives a schematic overview of OCT reconstruction with IAA. The re-
flectivity 𝑎(𝑚) is estimated with a weighted least square reformulation of Eq. 3.5

𝑎(𝑚) = argmin𝑎(𝑚)‖y− 𝑎(𝑚)f𝑚‖2Q−1𝑚 , 𝑚 = 0, 1, … ,𝑀 − 1 , (3.6)
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where the weighting on a vector u is defined as ‖u‖2Q−1𝑚 ≜ u𝑇Q−1𝑚 u, resulting in the
solution

𝑎(𝑚) = f𝐻𝑚Q−1𝑚 y
f𝐻𝑚Q−1𝑚 f𝑚

, 𝑚 = 0, 1, … ,𝑀 − 1 . (3.7)

As shown in Figure 3.1, Q−1𝑚 is initialized as the identity matrix I𝑁, which gives the
same result as the DFT with zero-padding. Subsequently, the 𝑁 × 𝑁 matrix Q𝑚 is
calculated based on the estimate of 𝑎(𝑚) as

Q𝑚 = R− |𝑎(𝑚)|2f𝑚f𝐻𝑚 . (3.8)

with (.)𝐻 standing for the Hermitian transpose (transpose and conjugate). Matrix
R is an estimate of the data covariance matrix, R ≜ 𝔼(yy𝐻), where 𝔼(.) denotes
mathematical expectation. Using Eq. 3.3 and assuming independence between
data and noise, R can be estimated as

R =
𝑀−1

∑
𝑚=0

|𝑎(𝑚)|2f𝑚f𝐻𝑚 + Σ , (3.9)

where Σ ≜ 𝔼(𝜂𝜂𝐻) ⪰ 0 denotes the covariance of the noise 𝜂.
The matrix Q𝑚 has a strong weight for signals from depths that have a high

amplitude (|𝑎(𝑚)|2), except for the estimated depth 𝑚, whose contribution is sub-
tracted in Eq. 3.8. Weighting with the inverse of Q𝑚 thus suppresses the contribu-
tion from high-intensity peaks at locations not identical to the estimated signal at
location 𝑚. Thus, side-lobes and edges of the main lobe are suppressed, while the
signal that belongs precisely to the location 𝑚 is passed nearly undisturbed. This
results in narrow peaks with limited side-lobes and thus in a high-resolution OCT
reflectivity profile 𝑎(𝑚). Both 𝑎(𝑚) and Q−1𝑚 are further refined during subsequent
iterations [26].

Use of Q𝑚 in Eq. 3.7 results in a considerable computational overload because
Q−1𝑚 has to be calculated for every 𝑚. Fortunately this can be avoided by the
introduction of

𝑎(𝑚) = f𝐻𝑚R−1y
f𝐻𝑚R−1f𝑚

, 𝑚 = 0, 1, … ,𝑀 − 1 , (3.10)

which is algebraically equivalent as can be readily shown using using the Matrix
Inversion Lemma [27], see also [26]. This is crucial as in Eq. 3.10 R is independent
of depth coordinate 𝑚, thus avoiding the computationally cumbersome need to
invert Q𝑚 for each depth coordinate 𝑚.

The noise covariance matrix Σ that appears in Eq. 3.9 has to be estimated from
the given data. A common assumption is that Σ is a diagonal matrix with (non-
negative) elements 𝜎2(𝑛), 𝑛 = 1,… ,𝑁. These can easily be estimated, in a scheme
similar to Eq. 3.10, as

𝜎2(𝑛) = | e
𝑇
𝑛R−1y

e𝑇𝑛R−1e𝑛
|
2

, 𝑛 = 1,… ,𝑁 , (3.11)
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with e𝑛 , 𝑛 = 1, 2, … , 𝑁 denoting the 𝑛-th column of the 𝑁 × 𝑁 identity matrix I𝑁.
Variables 𝜎2(𝑛), 𝑛 = 1,… ,𝑁 may be interpreted as the variance of each noise com-
ponent in Eq. 3.3. In this work we assume equal variance for all noise components,
equal to the average of 𝜎2(𝑛), i.e.,

Σ = 𝜎2I, 𝜎2 = 1
𝑁

𝑁

∑
𝑛=1

𝜎2(𝑛) . (3.12)

The IAA estimator is obtained by iterating Eq. 3.9 and Eq. 3.10 until convergence.
About 10 iterations are usually required for convergence, see also [26, 32, 33]. The
algorithm is summarized in Appendix 3.7.

3.2.3. Brute force IAA
When implementing IAA in a brute force way, i.e., by direct use of Eqs. 3.9, 3.10,
3.11 and 3.12, without taking into account the underlying structure of the perti-
nent matrices and variables, the overall computational complexity denoted with 𝒞
is approximately given by

𝒞𝐵𝐹 (𝑁,𝑀, 𝑞𝑖) = 𝒪 (𝑞𝑖 (2𝑁2𝑀 +𝑁3)) , (3.13)

with 𝑞𝑖 denoting the number of the applied IAA iterations. This comprises first
the calculation of the covariance matrix R by means of the sum of weighted outer
vector products (Eq. 3.9, 𝒪 (𝑁2𝑀)), next the inversion of the covariance matrix R
(𝒪 (𝑁3)) using a standard linear system solver, i.e., Cholosky’s decomposition fol-
lowed by back substitution, and, thirdly, the dyadic product in Eq. 3.10 (𝒪 (𝑁2𝑀)).
All these elements are repeated for each iteration (the factor 𝑞𝑖). The brute force
IAA implementation is summarized in Appendix 3.7.

3.2.4. Fast IAA
The computational complexity can be significantly reduced by taking into account
the particular properties of the variables resulting from the Fourier vectors (Eq. 3.4)
[28, 29, 34]. As we assume the noise variances to be equal, i.e., Σ = 𝜎2I, the inter-
ference covariance matrix R is a Hermitian Toeplitz matrix, which instead of using
Eq. 3.9, can be efficiently estimated by means of Toeplitz to Circulant matrix em-
bedding in 𝒪 (𝑀log2(𝑀)) operations [28]. Taking into account the special structure
(the low displacement rank) of a Toeplitz matrix, R−1 can be implicitly estimated
by means of the Gohberg-Semencul (GS) factorization and the use of the Levinson-
Durbin algorithm [27]. Using the GS factorization of R−1, the elements in Eq. 3.10
and the noise variance elements 𝜎2(𝑛), Eq. 3.11, are computed using the FFT
as the computational engine. This gives an overall computational complexity of
approximately [28, 29, 34]

𝒞𝐹 (𝑁,𝑀, 𝑞𝑖) = 𝒪 (𝑞𝑖 (𝑁2 + 𝛾𝑁 log2𝑁 + 1.5𝑀 log2𝑀)) , (3.14)

where parameter 𝛾 is a number that depends upon the particular implementation
details of the several Toeplitz vector products that are required by the method
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(e.g. 𝛾 = 12 was reported in [28]). Compared with the brute force implementation
(Eq. 3.13), the reduction in complexity is more than a factor 𝑁 as Eq. 3.14 has terms
𝑁2 rather than 𝑁3 and 1.5𝑀 log2𝑀 rather than 𝑁2𝑀. 𝑀 is typically a factor 8-32
higher than 𝑁, leaving log2𝑀 still significantly below 𝑁. The extra term 𝛾𝑁 log2𝑁
is less significant than the other two, as 𝑁 ≪ log2𝑁 and 𝑀 > 𝑁.

3.2.5. Recursive scheme for B-scan processing (RFIAA)
B-scan OCT imaging is performed by processing 𝑁𝐵 consecutive A-scans as columns
in an image matrix. The columns are usually processed independently to produce
the corresponding sequence of depth profiles, eventually combined to an OCT B-
scan image. Obviously, the computational cost for processing a B-scan using the
IAA method for independent A-line processing is given by

𝒞𝐵𝑠𝑐𝑎𝑛 (𝑁𝐵 , 𝑁,𝑀, 𝑞𝑖) = 𝑁𝐵 𝒞𝐴𝑠𝑐𝑎𝑛 (𝑁,𝑀, 𝑞𝑖) (3.15)

with 𝒞𝐴𝑠𝑐𝑎𝑛 (𝑁,𝑀, 𝑞𝑖) depending upon the particular IAA implementation. As most
imaged samples are slowly varying in the lateral direction, and particularly when the
lateral sampling distance is around or below the lateral OCT resolution, it is expected
that successive A-lines have resemblance to each other. This fact can be taken into
account in the application of the IAA algorithm on the B-scan data set since upon
convergence only a small variation between the data covariance R of successively
processed A-scans is expected. Thus an efficient iterative updating procedure can
be applied [30], where the data covariance of the previously processed A-scan is
used for an initialization close to the convergence value of the currently processed
A-scan, thereby reducing the required amount of iteration from 𝑞𝑖 to 𝑞𝑟𝑐𝑖 < 𝑞𝑖. The
computational complexity of the recursive IAA (RIAA) scheme is

𝒞𝑅−𝐵𝑠𝑐𝑎𝑛 (𝑁𝐵 , 𝑁,𝑀, 𝑞𝑖 , 𝑞𝑟𝑐𝑖) ≈ 𝑁𝐵 𝒞𝐴𝑠𝑐𝑎𝑛 (𝑁,𝑀, 𝑞𝑟𝑐𝑖) , (3.16)

where the approximation is valid since 𝑞𝑖 ≪ 𝑁𝐵, noting that 𝑞𝑟𝑐𝑖 ≤ 𝑞𝑖. In the
recursive implementation, usually one or two iterations are enough to get results
comparable to those obtained by the non-recursive approach. Compared to the
standard IAA schemes where about 𝑞𝑖 = 10 iterations are required for conver-
gence, the RIAA offers a significant reduction as it needs about 5 or 10 times fewer
computations typically using 𝑞𝑟𝑐𝑖 = 1 − 2.

In the most efficient algorithm, RIAA is implemented based on the FIAA method,
resulting in the recursive fast IAA (RFIAA) method. The recursive scheme is made
compatible for parallel processing by dividing the B-scan into data chunks according
to the number of available CPU cores. For each chunk, the first column is initialized
with 𝑞𝑖 iterations, and subsequent columns are iterated 𝑞𝑟𝑐𝑖 times after the pro-
posed initialization close to convergence. As the number of cores is usually much
smaller than 𝑁𝐵, the computation complexity is not significantly affected and still
follows Eq. 3.15. However, this implementation makes RFIAA applicable with par-
allel processing with multiple cores which results in significant computation time
reduction.
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3.2.6. Reduction of reconstruction range
The standard FD-OCT reconstruction implies a 50% redundancy in the estimated
depth profiles as the mirror image (with negative 𝑧-values) is usually rejected, keep-
ing only the values for the positive depth range. Moreover, due to the presence of
auto-correlation artifacts and limited imaging depth, the depth range that contains
useful sample information is usually even smaller.

We increase the efficiency of the OCT reconstruction with IAA by restricting the
reconstruction to a useful depth range Δ𝑧. This reduces the reconstruction grid
length 𝑀 with a factor 1/𝑅 = Δ𝑧/(2𝑧max) ≤ 0.5. Limiting the reconstruction depth
range also allows for reduction of the input interference spectrum length 𝑁 such that
it only includes the frequencies that contribute to the useful range. This is imple-
mented by shifting the useful depth range to the region centered at 𝑧 = 0 using the
modulation property of the DFT, followed by low-pass filtering and down-sampling
at the rate 1/𝑅𝑠, where 𝑅𝑠 = ⌊𝑅⌋ is the integer value operator. This reduction is
most efficient when 𝑅 is an integer that equals a power of 2. The computational
gain due to range reduction is a factor 𝒪 (𝑅2) or 𝒪 (𝑅 (1 + log2 (𝑅/𝑀))), depending
on whether the first or the last term in Eq. 3.14 is predominant.

3.3. Methods
3.3.1. Experimental setup
The measurements were performed with a commercial spectral-domain OCT system
(Ganymede-II-HR, Thorlabs, Germany). The light source consists of two coupled
super-luminescent diodes that are combined in a spectrum with a central wave-
length of 900 nm and a full width half maximum (FWHM) of 120 nm. The FWHM of
the axial intensity point spread function (PSF) was experimentally measured to be
3.0 µm in air, which corresponds to 2.2 µm in tissue. The spectrometer has 2048
pixels covering a 220 nm bandwidth, giving an axial imaging range of 1.87 mm.
The intensity lateral PSF was experimentally determined with a knife-edge step re-
sponse to have a FWHM of 6 µm in focus. The spectral raw data was acquired using
ThorImage software (version 5.2.0) and further processed in MATLAB (R2020a).

3.3.2. OCT sample imaging
Experimental OCT data was obtained from a wedge phantom, a layered interface
phantom, an onion sample, and finger skin tissue.

The wedge phantom represents a sparse object that is ideal to study the ability to
resolve two closely separated reflectors. The air wedge was constructed by placing
a coverslip on a microscope glass; it was tilted by placing a piece of tape between
them at one end. A neutral density filter (NE20A-B, Thorlabs, Germany) was placed
between the lens and the wedge phantom to circumvent detector saturation, and
the wedge was placed in a depth region without auto-correlation artifacts. The
position of the two wedge interfaces was determined by a two-peak Gaussian fit on
the FBW-DFT A-scans in the region where the interfaces were well resolved. The
interface location was extrapolated using a quadratic fit to the region where the two
interfaces were not well resolved. This extrapolation served as the ground truth to
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determine the separation of the interfaces.
The layered interface phantom was used to study intensity fluctuations at dif-

ferent SNRs. It consisted of two coverslips on a microscope glass. The coverslips
were spaced by a layer of tape at their edges and the space was filled with ethanol
to create both air-glass and ethanol-glass interfaces with different intensities and
SNRs. The phantom was placed out of focus to avoid detector saturation.

To test IAA on medium sparse objects, a slice of an onion was imaged. Onion
cells are typically 50-100 µm high and have clear boundaries that consist of two
closely separated interfaces, which are typically 6-10 µm separated [18]. Thus,
these layers can only be resolved with a high axial resolution. First, a cross-sectional
image was taken that contains 1024 scan lines over a range of 3 mm, giving a lateral
spacing of 2.9 µm between the scan lines. Second, a volume data set was obtained
of 512 × 512 scan lines, covering 2.5 × 2.5 mm2. With the volume scan, 8 spectra
were acquired per lateral position, which were averaged before further processing
to increase SNR.

IAA was tested on a non-sparse sample by imaging skin tissue from the fingertip.
The dense skin tissue has a low level of sparsity and is a good sample to evaluate the
performance of the methods on reconstruction quality and contrast in the context of
medical imaging. The B-scan comprises 2048 lines over a lateral range of 8.1 mm,
giving a lateral spacing of 3.9 µm between subsequent scan lines. The contrast to
noise ratio (CNR) was calculated as

𝐶𝑁𝑅 =
|𝜇𝑠 − 𝜇𝑛|
√𝜎2𝑠 + 𝜎2𝑛

, (3.17)

where 𝜇 and 𝜎2 were the mean and variance of the speckle ((.)𝑠) and noise ((.)𝑛)
region respectively. Also an OCT volume data set of skin tissue was obtained with
128×128 scan lines over an area of 0.8×0.8 mm2, with 8 spectra per scan line for
spectral averaging.

Finally, contrast and speckle statistics was quantified using an Intralipid sus-
pension (Fresenius-Kabi) diluted to 2.5 weight%. A droplet of the suspension was
placed under a microscope coverslip to create a flat top surface, which was aligned
to be horizontal in lateral scan direction. A B-scan of 1024 scan-lines was recorded
over a lateral range of 3 mm. The depth dependent intensity due to confocal PSF,
roll-off and attenuation [35] was compensated for by dividing the OCT intensity of
the Intralipid region by the laterally averaged intensity of this region, thus creating
a homogeneous scattering region.

3.3.3. OCT data simulations
OCT data was simulated to study the resolution, intensity preservation, and contrast
in RFIAA reconstruction. The simulated spectra were based on a 1D OCT model [31]

𝐼(𝑘𝑖) = 𝑆0(𝑘𝑖) |1 +∑
𝑗
𝑎𝑗𝑒𝑖2𝑘𝑧𝑗|

2

+ 𝜂(𝑘𝑖), (3.18)
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where 𝑆0(𝑘𝑖) is the experimental source spectrum (see Fig. 3.2(a)) for discrete
wavenumber 𝑘𝑖, 𝑎𝑗 ≪ 1 is the amplitude of reflector 𝑗 at depth 𝑧𝑗 and 𝜂(𝑘𝑖) is
Gaussian noise with a standard deviation proportional to √𝑆0(𝑘𝑖). The terms within
the bracket corresponds to respectively the reference and the sample field.

For the resolution study, a wedge was simulated as two reflectors with an equal
amplitude and a spacing 𝑧2 − 𝑧1 ranging from 0 to 29 µm over 1024 A-scans. The
simulated object for studying intensity preservation consisted of 8 horizontal inter-
faces with halved amplitude (-6 dB intensity drop) for each subsequent interface.
For studying contrast and speckle statistics, 3 speckle regions with different mean
intensity were simulated. The spectrum from a speckle region was simulated by
taking 2048 reflectors with equal amplitude 𝑎𝑗 located at random depths 𝑧𝑗 (uni-
form probability distribution) over a 150 µm depth range. The signal from these
sub-resolution reflectors added up coherently, creating a 1D speckle pattern. The
amplitudes 𝑎𝑗 were halved for each subsequent region. The position of the reflec-
tors in subsequent A-scans was independent, so the effect of finite lateral resolution
is not taken into account.

3.3.4. OCT data processing
Pre-processing of the spectral data consisted of three steps: subtracting the refer-
ence arm OCT spectrum, interpolating the data on a grid that is linear in the wave-
number domain, and multiplying with a phase vector to compensate for dispersion
mismatch. The dispersion was corrected for with a fourth-order polynomial, whose
coefficients are determined from a reference measurement with a single mirror as
reflector [36]. After the generic pre-processing, the data were further processed
according to four different methods:

1. Full bandwidth-DFT (FBW-DFT)
This is the DFT reconstruction of the full bandwidth signal and acts as a ground-
truth image. The interference spectra were Gaussian reshaped to suppress side-
lobes [37], as shown in Figure 3.2 (a). To avoid noise amplification, the edges
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Figure 3.2: (a) The original source spectrum and the reshaped spectra for each of the four methods.
(b) A typical zoom in A-scan obtained with RFIAA for different 𝑞𝑟𝑐𝑖.
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the spectrum were not reshaped but followed the original source spectrum. The
FWHM of the corresponding bandwidth-limited axial PSF is 2.7 µm. The OCT depth
information was obtained by taking the inverse DFT of the reshaped spectral data,
with zero padding to obtain a grid spacing that is equal to that of the RFIAA recon-
struction.

2. Partial bandwidth-DFT (PBW-DFT)
This is the DFT reconstruction of a partial bandwidth interference spectrum that is
obtained by reshaping the spectrum with a narrow Gaussian window. The spectral
interval was chosen around the high-intensity peak on the left side of the original
spectrum, as indicated in Figure 3.2. This ensured that the majority of the signal
comes from a single SLED, thus avoiding non-uniform modulation in the region
where the spectra of different SLEDs overlap. Non-uniform modulation can be
caused by polarization mismatch between the SLEDs, thereby degrading the axial
resolution [38] and potentially affecting the spectral estimation result. As low-
intensity spectrum tails have insufficient SNR for spectral estimation [21] but help
in side-lobe reduction for DFT reconstruction, we chose the Gaussian window for
PBW-DFT to have a relative intensity of 10% at the edges of the window that is
used for the spectral estimation methods and extend it to outside this domain, as
shown in Figure 3.2. The FWHM of the corresponding bandwidth-limited axial PSF
is 8.3 µm. The reshaped spectral data was zero-padded before taking the inverse
DFT to obtain a grid spacing equal to that of the RFIAA reconstruction.

3. Auto-regression filter (AR171)
This is the auto-regressive reconstruction on a spectrally normalized truncated part
of the bandwidth that covers a quarter of the spectrometer bandwidth, identical
to the bandwidth of the PBW-DFT except for the low intensity edges, as indicated
in figure 3.2. The AR parameters were estimated using the modified covariance
method and the model order was set to 171, corresponding to a third of the data
pixel length as proposed by Liu et al. [21]. The DFT-based axial PSF of the corre-
sponding rectangular source spectrum has a FWHM of 6.5 µm.

4. Recursive Fast IAA (RFIAA)
This is the proposed RFIAA spectral estimation OCT on the truncated part of the
total bandwidth (same part as for AR171). The spectral data is spectrally normalized
before using it in the RFIAA algorithm, resulting in a DFT-based axial PSF with a
6.5 µm FWHM.

The number of iterations 𝑞𝑖 of the first scan line was set to 10, which was
sufficient to obtain convergence. The value of 𝑞𝑟𝑐𝑖 was chosen based on a test with
a reconstructed A-line for different 𝑞𝑟𝑐𝑖 of the onion sample, shown in Figure 3.2(b).
A value of 𝑞𝑟𝑐𝑖 = 2 already gives significant side-lobe reduction (1-3) and deeper
valleys (4) over 𝑞𝑟𝑐𝑖 = 1. The further effect of increasing 𝑞𝑟𝑐𝑖 beyond 𝑞𝑟𝑐𝑖 = 2 is
limited. Hence, we chose 𝑞𝑟𝑐𝑖 = 2. The RFIAA upsampling factor 𝑀/𝑁 (for full
range reconstruction) was chosen to be 64 for the wedge and simulation images to
achieve an optimal evaluation of the performance, especially for high SNRs that give
a high resolution. For the onion and skin sample, 𝑀/𝑁 = 16 was chosen for fast
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computation and good image quality. The reduced reconstruction depth range for
all objects covered half the positive 𝑧-range (downsampling factor 𝑅 = 4) centered
around region of interest.

For all four methods, the intensity of the OCT signal is used for further analysis.
For visualization, the intensity is log compressed and the lower limit of the dynamic
range is determined by fitting a Rayleigh distribution on the histogram of amplitudes
of a custom selected noise region in the image, as described by Steiner et al. [39]
(using 𝜏 = 0.95).

All data processing was implemented as MATLAB scripts (version R2020a) using
its intrinsic functions. FIAA implementation is taking advantage of the levinson.m
intrinsic function, which is actually implemented as a mex file bundled in the MATLAB
programming environment. No further attempt for speeding up the running time
using MATLAB’s compiler capabilities nor any direct C-code programming has been
applied. The AR modified covariance estimator, which is required in the approach
proposed in [21], is implemented using armcov.m intrinsic function. This is a
plain, brute force implementation of the AR modified covariance estimator, offering
some intrinsic parallel processing capabilities due to the use of the available BLAS3
routines. All code was executed on a Dell Precision 5820 with an Intel Xeon W-2223
CPU and 32 GB RAM. The B-scan was cut in 4 equal-sized sub-images for parallel
processing on the 4 CPU cores, as discussed in 3.2.5. AR reconstruction was applied
in parallel on scan line level.

3.4. Results
3.4.1. Sparse wedge object
Figure 3.3 shows the imaging results of the wedge phantom obtained with the differ-
ent methods. The two interfaces of the wedge are clearly visible (figure 3.3(a-d)).
The FBW-DFT image shows a beating pattern at the location where the interfaces
approach each other. This effect becomes a lot more pronounced when the band-
width is reduced with PBW-DFT. This beating pattern is caused by coherent addition
of the reflection of both interfaces, and further influenced by spectral leakage in
DFT reconstruction [40]. For PBW-DFT, the beating pattern strongly reduces the
resolvability of the two interfaces and is an indication of the lower axial resolution.
Using the same bandwidth as with PBW-DFT, the two spectral estimation methods
reconstruct the two wedge interfaces as narrow lines and largely eliminate the beat-
ing pattern. AR171 gives the most narrow representation of the interface, which
appears relatively dark due to strong variation of peak intensities caused by the
AR reconstruction. This variation required the dynamic range of the image color
scale to be extended to 55 dB. Where the interfaces approach each other, vertical
stripe artifacts appear and the interfaces become ill-defined. Though RFIAA gives
a slightly less narrow representation of the interface than AR171, the intensity of
the interfaces are more constant. Still the improvement with respect to PBW-DFT is
very clear and the interfaces are imaged narrower than FBW-DFT that uses a four
times larger bandwidth. Towards the left of the image, the interfaces melt together
in a beating pattern, and some stripe artifacts are visible.
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Figure 3.3: (a-d) Experimental OCT images of the wedge phantom. The SNR is 32 dB, and the dynamic
range is 15 dB (a,b,d) or 55 dB (c). Scale bars indicate 10 µm vertical and 100 µm horizontal. The
arrows indicate the widest separation where the surfaces are not resolved. (e) Cross section of the OCT
intensity at the white dotted line in (a-d). (f) The resolution as a function of SNR based on simulations
(solid line). The experimental values are indicated with the star.

The cross sections in Figure 3.3(e) further illustrate the described effects. PBW-DFT
gives a broad peak from the merged interfaces. AR171 gives narrow peaks, but the
intensity of the first interface is less than 10% of the second interface which does
not resemble the true relative intensity as obtained with FBW-DFT. This effect is
clearly a disadvantage of AR reconstruction [21] and will be explored further in the
next section. RFIAA gives peaks that are about the same height and a bit narrower
than FBW-DFT.

The OCT axial resolution was quantified as the widest spacing at the edge where
the interfaces first merge for two successive A-scans. The two interfaces are con-
sidered to merge when the valley between the peaks is less than a factor 0.5 (3
dB) below the lowest peak intensity. The arrows in Figure 3.3(a-d) indicate the
resolution limit for the shown images, at a spacing of 4.9 µm, 14.4 µm, 4.2 µm and
5.5 µm for FBW-DFT, PBW-DFT, AR171, and RFIAA respectively. RFIAA thus gives a
2.6 times better resolution than PBW-DFT that uses the same spectral bandwidth.
Figure 3.3(f) shows the resolution as a function of SNR, based on simulated OCT
data of a wedge. The resolution for DFT reconstruction is independent of SNR and
thus follows a horizontal line. For spectral estimation methods, the resolution im-
proves with increasing SNR [21], which is visible in the decreasing curves for AR171
and RFIAA. For an SNR above 30 dB, AR171 outperforms RFIAA and achieves res-
olutions up to 0.2 µm for SNR > 75 dB where RFIAA obtains a resolution of 1 µm.
However, in practice, few OCT measurements are performed at such a high SNR.
For SNR values below 30 dB, RFIAA outperforms AR171, showing that it is better
able to handle data with a medium to low SNR. Over the full studied SNR range,
RFIAA gave a better resolution than PBW-DFT. The resolutions from the experimen-



3.4. Results

3

59

tal data are indicated in the graph with a star and correspond well to the simulated
results.

3.4.2. OCT intensity reconstruction
A major drawback of AR171 is that reconstructed intensity does not correspond
with the true intensity of the reflected light. In this section, we further investigate
this behavior and compare it to the performance of RFIAA. Figure 3.4(a) shows
the image of an OCT simulation of 8 interfaces whose intensities drop with 6 dB
with every subsequent interface. The decreasing intensity is clearly visible in the
DFT reconstructed regions of the image. Figure 3.4(b) shows part of an A-line
at the dashed lines in (a) for the different methods. For FBW-DFT, PBW-DFT, and
RFIAA, the peaks 1 to 6 have monotone decreasing intensities corresponding to the
simulated reflection intensities. In contrast, the peaks of AR171 do not follow this
pattern and give fluctuating intensities that do not correspond to the real reflection
intensity; e.g., peak 6 has a 10 dB higher intensity than peak 1, while it should be
30 dB lower than peak 1.

This effect is also clear when we take all the 1024 lateral positions into account,
as shown in figure 3.4(c). Here, the mean intensity of each interface is indicated
with a diamond, together with error bars that mark the edges of the middle 95%
intensity values, i.e., the 2.5th and 97.5th percentile. These edges correspond to
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Figure 3.4: Results on OCT reflection intensity preservation. (a) OCT reconstruction of a simulated
object with interfaces whose reflection intensity drops with 6 dB with every subsequent interface. The
different columns indicate the results of the four methods. The scale bar is 100 µm. (b) Part of an
A-scan at the dashed lines in (a), normalized to the maximum value of the A-scan. (c) The mean OCT
peak intensity of the interfaces. Error bars mark the range of the middle 95% intensity values. The SNR
is determined from the PBW-DFT image. (d) Full range of the middle 95% intensity values as a function
of SNR of the PBW-DFT image.
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2𝜎 below and above the mean for normally distributed values. On the horizontal
axis is the average SNR of the corresponding interface in the PBW-DFT image. The
mean intensities for FBW-DFT, PBW-DFT, and RFIAA lie on a straight line with a
slope of 1 and have small error bars. AR171 gives much lower mean intensities,
due to a few high-intensity peaks on which the image is normalized. Moreover, the
mean intensities do not follow a straight line, but flatten out for high SNR above
30 dB, showing that even the average intensity over 1024 lines does not follow
the true reflection intensity. Most importantly, the intensity varies with 20 dB to
30 dB, clearly showing that AR reconstruction does not allow for quantifying relative
reflection intensities of features within a sample.

The width of the middle 95% intensities range (95% width) as function of SNR
is plotted in Figure 3.4 (d). PBW-DFT corresponds well with the theoretical value,
which is based on the standard deviation of peak intensity and noise [41], and
is indicated with the black dashed line. This shows that all the fluctuations are
caused by the noise and not by reconstruction inaccuracies. FBW-DFT is below this
theoretical value because with a larger bandwidth it has more power and thus a
higher SNR than PBW-DFT, whose SNR is on the horizontal axis. The 95% width
with RFIAA is less than 0.5 dB above the theoretical value, a difference that is
negligible compared to typical dynamic ranges in OCT images. It is worth noticing
that for high SNR, where the theoretical values and DFT-based methods go to 0,
RFIAA remains at a plateau of about 0.5 dB. This may indicate that where DFT-
based methods reduce the variation in peak intensity, RFIAA uses this extra SNR to
increase the resolution while keeping the variation in peak intensity at an acceptable
level. For the DFT and RFIAA methods, the 95% width remains below 3 dB for SNRs
above 20 dB. This is in sharp contrast with AR171, that has 95% widths between
20 dB and 30 dB, which are outside the vertical range of Figure 3.4(d).

The simulation results on intensity reconstruction were complemented by mea-
surements on the layered interface phantom. The four interfaces had SNRs ranging
from 18 dB to 32 dB. The mean intensities and 95% widths are indicated with stars
in Figure 3.4(c-d) and correspond well with the simulations.

In conclusion, RFIAA, in contrast to to AR171, reconstructs true reflection in-
tensity and thus allows for quantitative analysis based on intensity (e.g. measuring
optical attenuation).

3.4.3. Medium sparse sample
As a biological object, we used a slice of onion tissue, which has large cells without
internal scattering structure, except for the nucleus, thus having a medium sparsity
level. The cell walls are made up of two layers that are typically 5-11 µm (6.5-15
µm optical path length (OPL)) apart, and could thus only be resolved with a high
axial resolution.

Figure 3.5(a-d) shows the OCT images of the slice of onion, clearly revealing
the cellular structure. In the FBW-DFT, the two cell wall layers are clearly distin-
guishable (indicated by the white arrows), though side-lobes around high-intensity
reflections (indicated by the green arrow) slightly reduce the image quality. The
limited resolution of the PBW-DFT reconstruction causes the double layers to merge
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Figure 3.5: OCT imaging results of the onion and skin sample. (a-d) Are images of the onion, (e-h)
are skin images and (i) and (j) are A-scans from respectively the onion and skin image at the dotted
lines. The images are visualized in dB scale with the dynamic range lower limit determined from noise
statistics. Scale bars indicate 150 µm.

into a thick cell wall. Even at the top surface where the separation between the in-
terfaces is larger, they are barely resolved. AR171 and RFIAA obtain a much higher
axial resolution with the same bandwidth as PBW-DFT. AR171 gives the most nar-
row lines, but the earlier described intensity fluctuations sometimes obscure one of
the layers (e.g. at the location indicated by the right white arrow). At this posi-
tion, RFIAA gives a clear image that is similar in resolution to FBW-DFT. RFIAA is
designed to improve resolution while suppressing side-lobes, which is visible in the
low side lobes around the high-intensity reflections (compared to FBW-DFT).

The A-scan in Figure 3.5(i) gives further insight into the performance of the
studied methods. At interface 1, only PBW-DFT does not clearly resolve the two
layers. AR171 gives the most narrow peaks, but the second peak has a much lower
intensity and is thus barely visible in the image. Although RFIAA gives wider peaks,
they are at the correct FBW-DFT intensity and the two layers are clearly resolved.
In between the peaks, AR171 gives a smooth valley which is typical for AR spectral
estimation. However, as these valleys are not smooth in the lateral direction, vertical
stripes are visible as side-lobes in the image, which is enhanced by the necessarily
large dynamic range. At interface 2, RFIAA performs well with a deeper valley and
less side-lobes than FBW-DFT. AR171 again gives a much lower peak intensity and
with a shallow valley, the image does not show clearly distinguished peaks. The
distances (in OPL) between the peaks for FBW-DFT, AR171, and RFIAA respectively
are estimated at 14.4 µm, 17.1 µm and 14.0 µm for interface 1, and 6.4 µm, 6.0 µm
and 7.3 µm for interface 2. This corresponds well with each other and only AR171
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on the first interface is more than 1 µm different from FBW-DFT. Concluding, RFIAA
improves the resolution significantly over PBW-DFT and gives an image close to
FBW-DFT with slightly less side lobes. In contrast to AR171, RFIAA reconstructs
reflection intensity in better agreement with FBW-DFT which leads to enhanced
image quality.

3.4.4. Non-sparse skin sample
The second biological object was a skin sample from a fingertip that has a low level
of sparsity. Figures 3.5(e-h) show the OCT images of the skin sample, with the
epidermal (ep) and dermal (de) layer, and the helical-shaped sweat duct (inset)
clearly visible. AR171 and RFIAA have a higher axial resolution than PBW-DFT,
visible in the top surface and axial thickness of the sweat duct. The top left corner
of the inset shows a small crack in the top surface that is better resolved with
AR171 and RFIAA. Using the red box as signal area and the green box as noise
area, the CNRs are 0.76, 0.80, 0.47 and 0.64, for FBW-DFT, PBW-DFT, AR171, and
RFIAA, respectively. RFIAA reconstruction gives a higher CNR than AR171, which
is also visible from the appearance of the images. Moreover, where RFIAA gives
well-developed speckle, AR171 gives some spurious peaks that form narrow curly
structures that may be mistaken for sample features.

The A-scan at the white dotted line, Fig. 3.5(j), shows the peaks corresponding
to the skin surface (number 3) and the sweat duct interfaces (indicated by numbers
4,6,7). PBW-DFT gives the broadest peaks, which RFIAA manages to narrow down
to a level similar to FBW-DFT (numbers 3 and 4) or even smaller (numbers 6 and
7). AR171 gives the narrowest peaks. However, peak 7 has a significantly lower
intensity than the true reflected light intensity, causing it to be less narrow and
less distinct from the side lobes. RFIAA has a few high-level side lobes or speckles
(number 5) that are still 7 dB below the lowest peak (6).

3.4.5. SE-OCT CNR and noise statistics
Figure 3.6 shows experimental and simulation results of homogeneous speckle re-
gions. Figure 3.6(a) shows the images of the Intralipid suspension, which gives a
homogeneous speckle pattern. As speckle size is closely linked with the spatial res-
olution, RFIAA gives a finer speckle pattern than PBW-DFT. The RFIAA speckle size
is slightly coarser than for FBW-DFT, probably because the SNR of a single speckle
that consists of a combination of multiple, unaligned, sub-resolution reflectors is
relatively low. With AR171, the speckle region appears dark due to some high-
intensity peaks that bring the dynamic range down. These peaks in the speckle
region also cause a high variance, resulting in a CNR that is 70% below that of
PBW-DFT. RFIAA gives a much better contrast with a CNR that is only 15% below
that of PBW-DFT. Figure 3.6(b) shows the speckle amplitude distribution, which
follows the predicted Rayleigh distribution for the DFT reconstructed images [42].
The histogram for RFIAA is very close to a Rayleigh distribution, while for AR171 it
deviates significantly from this theoretical distribution. Each method gives similar
histograms for the amplitude distribution in the noise region.
Figure 3.6(c) shows the simulated images of three speckle regions with decreasing
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Figure 3.6: Experimental and simulation results on contrast and speckle statistics. (a) Images of an
Intralipid suspension with their CNR. (b) Histogram of the OCT amplitudes in the speckle region with
a fit of the Rayleigh distribution (red line). (c) Simulation images of 3 regions with different speckle
intensities and their CNR. (d) Histograms of the OCT amplitude in the noise region with a fit of the
Rayleigh distribution (red line). The green dashed lines indicate the lower dynamic range limit for the
images of (c). Scale bars indicate 200 µm, where the lateral size of the images in (c) is undefined. The
white dashed rectangles indicate the noise and speckle regions for CNR calculation.

intensities. FBW-DFT, PBW-DFT, and RFIAA give similar image contrast between the
regions, with the size of the speckles being the main difference. The speckle size is
similar to that in Fig. 3.6(a). The CNR of AR171 is 93% to 99% below the CNR of the
DFT methods, while the CNR with RFIAA is only 10% below that of the DFT meth-
ods. The simulation results on speckle regions of different intensities correspond to
the observations from the experimental data. Figure 3.6(d) shows the histograms
of the OCT amplitude in the noise region (top rectangle in Fig. 3.6(c, FBW-DFT)),
which have similar shapes as those for the speckle region in Fig. 3.6(b). These re-
sults indicate that RFIAA outperforms AR171 in preserving noise and speckle statis-
tics, which is useful for, for example, tissue characterization [43] and automatic
thresholding [39]. Moreover, they show that as a non-parametric method, RFIAA
describes the underlying physics better than AR spectral estimation that assumes
an AR model with a fixed order.

3.4.6. SE-OCT computation time benchmarking
Table 3.1 shows the computation time for the onion slice sample, averaged over
100 realizations, along with a theoretical count of the complex-valued operations
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required for processing of a single A-scan by each tested method.
FBW-DFT and PBW-DFT have the same computation time as both are zero-

padded to the same length. As expected, DFT reconstruction is the fastest, with
a computation time of one to two orders of magnitudes below the other methods.
RFIAA with parallel processing on half the useful range (𝑅 = 4, 𝑁 = 128,𝑀 = 2048)
gives a fast 0.37 s computation time for a 1024-line B-scan. Although this is not yet
sufficient for video-rate processing at 20 frames per second, it approaches real-time
reconstruction while for post-acquisition viewing the waiting time is negligible. It
also allows for fast 3D (see visualization 1 and 2) and time-lapse OCT reconstruction
within short time scales without the need for supercomputers.

AR171, with 5.23 s computation time, is significantly slower than RFIAA. Reduc-
ing the reconstruction range similar to that used for RFIAA will bring the computa-
tion time down to 0.43 s for AR43 (AR with an order of 43), but the resulting lower
order may hamper the ability to reconstruct complex sample structures [21]. We
note that the AR modified covariance estimator could have been implemented using
a fast 𝒪 (𝑝2) algorithm [44] instead of the current implementation. However this is
neither available in the MATLAB programming environment, nor is it supported as

Table 3.1: Average computation time of a 1024-line B-scan for the studied methods over 100 realizations.
The reduced reconstruction range and parallel processing over 4 CPU cores are optional as indicated.
AR43 acts on the same reduced range data as RFIAA with reduced range. For the times in this table,
𝑁 = 512, 𝑀 = 8192 and 𝑅 = 4, as used for the onion and skin sample.

Method #Flops/A-scan

B-scan
reconstruction

time (s)
(non-parallel)

B-scan
reconstruction

time (s)
(parallel)

DFT 𝑀 log2𝑀 0.042 n.a.

AR 𝑝𝑁+𝑝
3

3
+0.5𝑀 log2(𝑀)

AR171 𝑝 = 171 10.4 5.23

AR43 𝑝 = 43 1.15 0.43

RFIAA
full range

𝑞𝑖(𝑁2 + 𝛾𝑁 log2𝑁
+1.5𝑀 log2𝑀)

3.47 1.63

RFIAA
reduced range

𝑞𝑖
𝑅 (

𝑁2
𝑅 + 𝛾𝑁 log2

𝑁
𝑅

+1.5𝑀 log2
𝑀
𝑅 )

0.74 0.37
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sharing code in [21].
Parallel processing over 4 CPU cores improves the computation speed only by

about a factor two for AR171 and both RFIAA implementations. Though the im-
provement with parallel processing is limited, probably due to overhead with han-
dling large matrices, it still helps to bring the computation time down and allows
for fast spectral estimation OCT. These results show that our efficient RFIAA imple-
mentation of SE-OCT gives fast OCT reconstruction; it is faster than standard AR
spectral estimation implementation, especially for full depth range reconstruction.

3.5. Discussion
We developed RFIAA, an optimized implementation of IAA, to successfully address
three problems that arise in SE-OCT:

• the dependency of the reconstruction result on subjective user-set parame-
ters,

• the occurrence of reconstruction artifacts, and

• the large computational load of SE methods.

We have shown that RFIAA improves the resolution over DFT methods, is non-
parametric, and showed consistency in both reconstructed intensity and speckle
statistics. The computation load is reduced to sub-second times for B-scan recon-
struction.

In this discussion, we first compare our method with other SE-OCT methods
and explore limitations of our method and potential improvements.

Comparing our method quantitatively with other SE-OCT methods is not straight-
forward. The obtained image quality depends on variables like bandwidth, SNR,
imaged sample, and dynamic range of visualization, which differs between pub-
lications. In addition, the computation time depends on computer hardware and
software implementation. As a way forward, the algorithms should be tested on the
same data set, as was done with AR in the current work. To allow for comparison
of future work, our data is available in a repository [45].

Still, a cautious and more qualitative comparison with earlier published methods
can be made based on the results they report. The iterative re-weighted approach,
as proposed by Mousavi et al. [22] is similar to RFIAA, with the main difference that
it uses a different weighting matrix, which depends on user-optimized parameters.
Moreover, it needs up to 50 iterations, does not adopt a recursive scheme, and uses
brute force matrix inversion, leading to A-scan processing times between 1.7 and
18.2 s (29 min to 5 hours for a 1024-line B-scan). Ling et al. [23] used a 𝓁1-norm
minimization, to promote sparsity of the solution, together with a non-weighted
minimum least square solver. This method needs a user-chosen Lagrange multi-
plier and has a large computation load with processing times of 4 s per A-scan (1 h
for a 1024-line B-scan) on a high-performance computer. The resolution improve-
ment is similar to what was obtained with RFIAA, though comparison is again not
straightforward because they do not mention SNR levels for the wedge experiment
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and use a different resolution criterion. Both methods allow for faster implementa-
tion, but that would need significant extra work and alteration of the algorithm. In
conclusion, RFIAA obtains similar results to two recently published state-of-the-art
methods without the need for parameter optimization and with orders of magnitude
less computation time.

Further improvement in computation time is possible using improved compu-
tation hardware with a higher level of parallelization. Data-parallel testing of the
proposed RFIAA approach on a 10-core workstation (Intel core i9-9900X) provided
significant speedup, giving a fast 0.0607 s computation time for a 1024-line B-scan,
in the case where RFIAA with parallel processing on half the useful range (𝑅 = 4,
𝑁 = 128, 𝑀 = 2048) is considered. These timing results indicate that the proposed
RFIAA approach is suitable for parallel implementation on multi-core CPUs, even
when fast prototyping, using high-level programming is considered. In terms of
a possible future direction, the above results are indicators that a lower-level pro-
gramming implementation (e.g. C/C++), along with parallel processing pragmas
(e.g. OpenMP, OpenACC) deployed on multi-core CPUs and/or accelerators (GPUs)
may be the way towards a real-time operating end application.

In this context, it should be highlighted that the most time-consuming part
of the proposed RFIAA approach is the linear system solver, which, due to the
Toeplitz structure of the underlying linear system, is tackled here using the 𝒪 (𝑝2)
Levinson’s algorithm available in MATLAB. However, several other alternative algo-
rithms can be used instead, offering either further computational reduction or be-
ing suitable for parallel implementation. Among them, are the so-called superfast
𝒪 (𝑝 log2(𝑝)2) methods [46–49], the 𝒪 (𝑝 log2(𝑝)) techniques based on iterative
linear solvers such as the conjugate gradient method [50, 51], and finally the fully
parallelizable Schur-type algorithms, amenable for implementation on massively
parallel hardware,[44, 47]

SE-OCT works especially well for samples that have a high level of sparsity and
clear interfaces with a high SNR. RFIAA is however more robust to high noise levels
than AR spectral estimation, as it gives a better resolution for SNR < 25 dB. It
also obtains a reliable reconstruction with good contrast of non-sparse regions in a
sample, though image quality improvement with respect to DFT based on the same
bandwidth is disputable in these areas. However, for a partially sparse sample,
RFIAA is able to sharpen the high-SNR features while retaining a good contrast
reconstruction of non-sparse areas. As the resolution is SNR dependent, the SNR
could be enhanced by spectral averaging, enabling higher resolution at the cost of
longer acquisition times.

In this work, we assumed equal variance for all the spectral noise components.
This is implemented in Eq. 3.12, where 𝜎2(𝑛) is averaged and multiplied with the
identity matrix to obtain a diagonal with constant values. However, IAA also can
use a wavenumber-dependent noise variance 𝜎2(𝑛). The implementation of this
would allow for accurately incorporating the higher noise at lower intensity edges
of the spectrum while reducing the influence of the higher noise level for these
parts. However, implementation of this makes the data-covariance matrix R non-
Toeplitz. Consequently, the fast implementation of IAA needs to be adapted leading
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to an increase in computational load. Thus wavenumber dependent noise variance
is most valuable when computation speed is less important than precision.

Contrary to AR spectral estimation, RFIAA obtains both the amplitude and phase
of the signal. This would allow for the RFIAA also in the domains of Doppler OCT
imaging and sub-resolution phase-resolved OCT motion imaging [52].

3.6. Conclusions
This paper presented RFIAA, a fast implementation of the non-parametric iterative
adaptive approach, for the reconstruction of OCT images with significantly better
axial resolution than conventional DFT reconstruction. This SE-OCT method suc-
cessfully addresses three problems of previously developed SE-OCT, namely the
dependency of the reconstruction result on subjective user-set parameters, the oc-
currence of reconstruction artifacts, and the large computational load. Contrary
to AR spectral estimation, the non-parametric RFIAA is consistent in reconstructed
intensity, yields a high contrast, and shows less spurious peaks. With a recon-
struction time of 0.37 s for a 1024-line B-scan, RFIAA is significantly faster than
other SE-OCT presented in literature. This brings SE-OCT a significant step closer
to application.

Data availability
Data and code underlying the results presented in this chapter are available in
Ref. [45].

3.7. Appendix A. Brute force IAA implementation
Below is an overview of classical, brute force IAA. The initialization of 𝑎(𝑚) and 𝜎2
are identical to applying weighting matrix R = I𝑛, being the 𝑁 × 𝑁 identity matrix.
The brute force implementation yields identical results as with the fast algorithm.
Initialization

𝑎(𝑚) = 1
𝑁 f

𝐻
𝑚y, 𝑚 = 0, 1, … ,𝑀 − 1

𝜎2(𝑛) = |𝑦(𝑛)|2, 𝑛 = 0, 1, … , 𝑁

𝜎2 = 1
𝑁

𝑁

∑
𝑛=1

𝜎2(𝑛)

Σ = 𝜎2In
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4
Computational 3D resolution

enhancement for optical
coherence tomography with a

narrowband visible light
source

Phase-preserving spectral estimation optical coherence tomography (SE-OCT)
enables combining axial resolution improvement with computational depth of
field (DOF) extension. We show that the combination of SE-OCT with inter-
ferometric synthetic aperture microscopy (ISAM) and computational adaptive
optics (CAO) results in high 3D resolution over a large depth range for an
OCT system with a narrow bandwidth visible light super-luminescent diode
(SLD). SE-OCT results in up to five times axial resolution improvement from
8 µm to 1.5 µm. The combination with ISAM gives a sub-micron lateral reso-
lution over a 400 µm axial range, which is at least 16 times the conventional
depth of field. CAO can be successfully applied after SE and ISAM and re-
moves residual aberrations, resulting in high quality images. The results
show that phase-preserving SE-OCT is sufficiently accurate for coherent post-
processing, enabling the use of cost-effective SLDs in the visible light range
for high spatial resolution OCT.

This chapter has been published as: Jos de Wit, George-Othon Glentis, and Jeroen Kalkman, Compu-
tational 3D resolution enhancement for optical coherence tomography with a narrowband visible light
source, Biomedical Optics Express 14, 3532-3554 (2023)
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tomography with a narrowband visible light source

4.1. Introduction
The spatial resolution in optical coherence tomography (OCT) determines the size
of the smallest details in the sample that can be visualized. In OCT, the axial
and lateral resolution can be considered to be decoupled [1]. The axial resolution
is determined by the coherence length of the light source, which scales with the
center wavelength 𝜆𝑐 and source bandwidth Δ𝜆 as 𝜆2𝑐/Δ𝜆 [2]. The lateral resolution
is proportional to the center wavelength and inversely proportional to the numerical
aperture (NA) of the optics that focuses the light onto the sample. To image fine
details of the sample, a high resolution is needed in both the axial and the lateral
direction.

The lateral resolution can be improved by using light with a shorter wavelength
or increasing the NA [2]. OCT with a high NA objective lens has also been called
optical coherence microscopy [3, 4]. With lateral resolutions reaching the microm-
eter level, sub-cellular structures could be visualized [3]. However, the use of a
large NA leads to a limited range where the light is tightly focused, the depth of
field (DOF), which is inversely proportional to the square of the NA. The limited
DOF is especially problematic for Fourier domain OCT (FD-OCT) where the signal
from the full axial range is acquired at once. Thus, most OCT setups use a low NA
to capture data that is well-focused over a large depth range. However, these low
NA systems cannot reach micrometer-level lateral resolutions.

Fortunately, there are several methods to extend the depth of field. Most
hardware-based methods engineer beams with a large DOF, such as Bessel beams [5],
or obtain images with different focus depths and combine them after acquisition [6].
Computational DOF extension methods use the overlap between the out-of-focus
fields to correct for the defocus [1]. Digital refocusing corrects each en face plane
for the defocus by propagating the complex field [1, 7]. Interferometric synthetic
aperture microscopy (ISAM) uses an inverse scattering model to refocus the whole
volume by interpolating in the 3D spatial frequency domain [1, 8, 9]. These meth-
ods can extend the DOF to over an order of magnitude (e.g. 24 times [10]), with
the DOF extension being mainly limited by the signal-to-noise ratio (SNR) and the
lateral extent of the phase stability.

The lateral resolution can also be improved by reducing the wavelength, with a
shorter wavelength leading to a linear reduction of the DOF. As the axial resolution
scales quadratically with the center wavelength, reducing the wavelength also im-
proves the axial resolution. Therefore, many high-resolution OCT systems use light
sources in the visible (VIS) wavelength range [11, 12]. While in the infrared region,
the superluminescent diode (SLD) has become the standard light source for spec-
tral domain OCT (SD-OCT), these are not readily available in the visible range. The
vast majority of the reported visible wavelength range SD-OCT setups use super-
continuum (SC) lasers [11–13] whose broad spectrum can create a very high axial
resolution. However, SC lasers are expensive and the more affordable lasers suffer
from high intensity noise. Moreover, the high operating power of the SC laser com-
plicates laser safety requirements and its ultra-broad bandwidth makes the optic
design of spectrometers and single mode fiber architecture more complicated.

Superluminescent diodes in the VIS spectrum are available, but the currently
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available SLDs have a relatively narrow bandwidth. Lichtenegger et al. used a
combination of a green (510 nm) and a red (635 nm) SLD together with deep
learning and supercontinuum-generated training images on the same system to
obtain high-resolution OCT images [14]. However, this still needs a spectrometer to
cover the full spectral range, as well as an SC laser to create training data on relevant
samples. Khan et al. used an SLD in the blue range (450 nm) for optical coherence
microscopy (OCM), but their axial resolution of 12 µm is an order of magnitude
above the lateral resolution, strongly limiting the sectioning capability [15]. Thus
obtaining both a high axial and lateral resolution is hard with the available VIS SLDs.

Computational improvement of the axial resolution, using deconvolution [16]
or spectral estimation methods [17], can be an alternative to using sources with
a large bandwidth. Spectral estimation methods can computationally improve the
axial resolution in OCT beyond the bandwidth limitation [17, 18]. Recently, we
presented a fast version of the iterative adaptive approach (IAA) using a recursive
scheme and a fast algorithm [18]. Contrary to, for example, the auto-regressive
(AR) method [17], IAA is parameter free and is able to estimate both the amplitude
and the phase of the object. This makes it possible to combine SE-OCT with com-
plex field-based computational methods, such as refocusing [7], inverse scattering
algorithms [8] and computational aberration correction (CAO) [9, 19].

Here we demonstrate combined high axial and lateral resolution OCT imaging
over an extended DOF with a narrow band visible SLD light source. To achieve this,
we combine the previously developed IAA-based spectral estimation OCT (SE-OCT)
with depth of field extension by ISAM.

First, we apply SE-OCT to improve the axial resolution. The improved axial
resolution corresponds to an extrapolation of the interference spectra in the 𝑘-
direction. Instead of using the DFT of the 𝑧-domain IAA data, the extrapolation
in 𝑘-domain is implemented by using the missing-data IAA (MIAA) [20]. Rather
than providing an image in the 𝑧-domain, MIAA gives the extrapolated data in 𝑘-
domain corresponding to the high axial resolution image. Second, we apply ISAM to
extend the DOF. ISAM is a resampling of the OCT spectra in the spatial frequency
domain. Third, we apply CAO to correct any remaining aberrations. To test the
algorithms and to get insight into the origin of the obtained improvements we have
simulated the entire SE-ISAM processing pipeline. The simulations are compared
to the experimental data. With MIAA we demonstrate the use of the cost-effective
SLDs in the VIS range for high axial resolution OCT while, with the combination with
ISAM and CAO, a high resolution is obtained in the lateral direction over a depth
range that is much larger than the conventional DOF.

4.2. Theory
Figure 4.1 gives a schematic overview of the proposed method, combining spectral
estimation and ISAM, applied on the spatial-domain OCT data that is obtained after
conventional DFT-based processing. The axial region of interest of the complex-
valued OCT image is Fourier transformed into the 𝑘 direction (a) to obtain input
spectra for the recursive fast IAA (RFIAA). RFIAA (blue arrow) first normalizes the
interference signal and selects the high SNR part (b), after which the actual RFIAA
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Figure 4.1: Schematic overview of the combined SE ISAM processing pipeline. In step (a), the inter-
ference spectra are obtained from the low-resolution OCT image. Steps (b-c) show the RFIAA spectral
estimation to obtain the complex-valued OCT image with axial resolution improvement. Step (d) added
to RFIAA completes MIAA, resulting in the extrapolated interference spectra. Steps (e-g) perform ISAM
inverse scattering. The combination of SE and ISAM results in an image with a high resolution in both
the axial and the lateral direction. The white dashed lines indicate the edges of the input spectrum for
RFIAA spectral estimation OCT. The line plots are illustrations of the spectrum at the center (red-dashed
line), with the RFIAA input spectrum in red.

algorithm is applied (c). Missing-data IAA (MIAA) (red arrow) not only estimates
the spatial domain signal as RFIAA does, but extrapolates the input spectrum (d).
Then, ISAM is applied (orange arrow) to refocus the image outside the depth of
field, resulting in a high resolution in both the lateral and the axial direction. ISAM
is implemented via a lateral spatial Fourier transform (e), interpolation in 𝑘-space
(f), and a 3D DFT (g).

In Figure 4.1 we propose to first use SE and then ISAM. The opposite order could
have an obvious advantage of an improved SNR with ISAM, leading to a higher axial
resolution with the application of SE. However, first applying ISAM and then SE has
some significant problems on which we will elaborate in section 4.5.

In the next sections, we first discuss MIAA, including a summary of the previ-
ously published RFIAA method. Then we briefly summarize the ISAM theory.

4.2.1. Spectrum extrapolation with missing-data IAA
The spectral-domain OCT signal
The one-dimensional interference signal in Fourier-domain OCT (in our case SD-
OCT) can be described as [21]

𝐼(𝑘) = 𝑆0(𝑘)∫
∞

−∞
�̃�(𝑧)e−𝑖2𝑘𝑧𝑑𝑧, (4.1)

where 𝑆0(𝑘) is the source spectral density as a function of wavenumber 𝑘, �̃�(𝑧) =
𝑎(𝑧) + 𝑎∗(−𝑧) is the combined reflectivity and conjugate reflectivity as a function
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of propagation distance 𝑧 in optical path length (OPL). Equation (4.1) shows that
the interference signal, measured as a function of 𝑘 is the product of the source
spectrum and the Fourier transform (FT) of the reflectivity �̃�(𝑧). The reflectivity
�̃�(𝑧) is usually estimated with an inverse FT resulting in an OCT reflectivity that is
the convolution of the reflectivity with the inverse FT of the source spectrum, the
latter of which acts as the axial PSF.

In OCT, the interference signal is measured on a discrete grid and can be ap-
proximated as [18]

y𝑔 ≈
𝐿−1

∑
𝑙=0
𝑎(𝑧𝑙)f𝑔(𝑧𝑙) + 𝜂, (4.2)

where y𝑔 is an 𝑁𝑔 × 1 vector containing the given normalized interference signal
𝐼(𝑘𝑛)/𝑆(𝑘𝑛) at discrete wavenumber 𝑘𝑛 and 𝑎(𝑧𝑙) is the discretized reflectivity. The
vector

f𝑔(𝑧𝑙) ≜ [ e−2𝑖𝑧𝑙𝑘0 … e−2𝑖𝑧𝑙𝑘𝑁𝑔 ]
𝑇
, (4.3)

is an 𝑁𝑔 × 1 vector with the Fourier components, and 𝜂 is an 𝑁𝑔 × 1 noise vector.
Note that here the subscript •𝑔 will be used for measured or given spectral data.

The iterative adaptive approach
Obtaining the reflectivity 𝑎(𝑧𝑙) from the measured spectrum is equivalent to a spec-
tral estimation problem [17, 18], which can be solved with a variety of methods.
Recently, we showed that the non-parametric iterative adaptive approach (IAA) [22]
can significantly improve the axial resolution with respect to the conventional dis-
crete Fourier transform (DFT) reconstruction [18].

In brief, IAA estimates the reflectivity 𝑎(𝑧𝑙) with a weighted least squares solu-
tion of equation (4.2) as

𝑎(𝑧𝑙) = argmin𝑎(𝑧𝑙) |y𝑔 − 𝑎(𝑧𝑙)f𝑔(𝑧𝑙)|
2
Q−1𝑔 (𝑧𝑙)

, 𝑙 = 0, 1, … , 𝐿 − 1 , (4.4)

where the weighting matrix Q𝑔(𝑧𝑙) is the interference covariance matrix of the
data excluding the contribution for 𝑧𝑙. This matrix suppresses the contribution
of high-intensity signals that are located at depths different from the estimated
depth location 𝑧𝑙, thus suppressing side lobes and edges of the main lobe of strong
reflectors. Solving Eq. (4.4) results in an estimated reflectivity with an improved
axial resolution. In view of the expected resolution improvement, 𝐿 is usually chosen
to be several times the input spectrum length 𝑁𝑔. In practice, this means that the
𝑎(𝑧𝑙) is calculated on a denser sampled grid with the same axial depth range as the
DFT-based reconstruction.

The solution of Eq. (4.4) can be written as

𝑎(𝑧𝑙) =
f𝑔(𝑧𝑙)𝐻R−1𝑔 y𝑔
f𝐻𝑔 (𝑧𝑙)R−1𝑔 f𝑔(𝑧𝑙)

, 𝑙 = 0, 1, … , 𝐿 − 1 , (4.5)
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where

R𝑔 =
𝐿−1

∑
𝑙=0
|𝑎(𝑧𝑙)|2f𝑔(𝑧𝑙)f𝐻𝑔 (𝑧𝑙) + Σ (4.6)

is the estimate of the data covariance matrix, which is estimated based on the
estimated reflectivity 𝑎(𝑧𝑙). The variable Σ is the covariance matrix of the noise 𝜂,
which is a diagonal matrix that can be estimated from the data and R𝑔 [18].

The sample reflectivity 𝑎(𝑧𝑙) is initialized as the DFT of y𝑔 with zero-padding,
which is equivalent to initializing the data covariance matrix with the identity ma-
trix, R𝑔 = I. By iterating between equations (4.5) and (4.6), the estimate for
the (complex) reflectivity 𝑎(𝑧𝑙) is refined. Usually, 10 iterations are sufficient for
convergence [22].

Missing-data IAA
IAA estimates the spatial-domain reflectivity 𝑎(𝑧𝑙), however, for the application of
ISAM, the spectral data corresponding to the high axial resolution image needs to
be estimated. This is an extrapolation of the interference spectrum outside the
range where it is measured, i.e. this data is missing from the measured data.

When missing data problems occur, the IAA algorithm can be used for miss-
ing data recovery following a two step procedure as described in [20]. MIAA can
cope with arbitrary missing data patterns, for uniform or nonuniform sampling, in-
terpolation as well as extrapolation of data sequences. In our case, we consider
the interference spectrum at wavenumbers 𝑘 where it is measured (to be more
precise, the high SNR part of the measured interference spectrum) as the given
data. For the application of ISAM, we aim to estimate the interference spectrum
at wavenumbers outside the given spectral range (left-hand side and right-hand
side data extrapolation). This data is not physically measured and will be indicated
as missing data. First, IAA is applied on the given data set for the estimation of
the 𝑧-domain reflectivity parameters and the computation of the relevant covari-
ance matrices. Then, extrapolated data (missing data) are estimated using a linear
minimum mean squared error (MMSE) estimator.

The MMSE MIAA data extrapolation considers the data sequence of the interfer-
ence spectrum of the form

y = [y𝑔y𝑚] , y𝑚 ≜ [
y𝑚𝐿
y𝑚𝑅

] (4.7)

where the subscript •𝑚 indicates the missing data, •𝑚𝐿, the left hand side missing
data, and •𝑚𝑅 the right hand side missing data. Vector y𝑔 of size 𝑁𝑔 × 1 contains
the given data, while vector y𝑚 of size 𝑁𝑚 × 1 represents the missing data. The
Fourier vector of Eq. (4.3) follows a compatible representation, i.e.,

f(𝑧𝑙) = [
f𝑔(𝑧𝑙)
f𝑚(𝑧𝑙)] . (4.8)

In the first step of MIAA, the reflectivity 𝑎(𝑧𝑙), 𝑙 = 0, 1, … , 𝐿 −1 has been estimated
using IAA on the given data, iterating equations (4.5) and (4.6). At the missing
data recovery step, a general linear estimator of y𝑚 is considered, [20],
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y𝑚 = Ty𝑔 . (4.9)

The matrix T that gives MMSE estimation of y𝑚 is given by

T̂ = R𝑚𝑔R−1𝑔 , (4.10)

where R𝑚𝑔 is the 𝑁𝑚 ×𝑁𝑔 cross-covariance matrix between the missing or extrap-
olated data and the given data. R𝑚𝑔 can be estimated using known quantities in a
similar way to the autocovariance matrix in IAA as

R𝑚𝑔 =
𝐿−1

∑
𝑙=0
|𝑎(𝑧𝑙)|

2
f𝑚(𝑧𝑙)f𝐻𝑔 (𝑧𝑙) , (4.11)

where f𝑚(𝑧𝑙) is the𝑁𝑚×1 vector with Fourier components at 𝑧𝑙 corresponding to the
missing wavenumbers 𝑘𝑛 equivalent to Eq. (4.3). Combining eqs. (4.9) to (4.11),
we obtain the estimation of the missing data

y𝑚 =
𝐿−1

∑
𝑙=0
[|𝑎(𝑧𝑙)|

2
f𝐻𝑔 (𝑧𝑙)R−1𝑔 y𝑔] f𝑚(𝑧𝑙) . (4.12)

Computational implementation of MIAA
Here, we consider the application of MIAA on OCT spectral data that is uniformly
sampled in the 𝑘-domain. Moreover, the reflectivity coefficients 𝑎(𝑧𝑙) in Eq. (4.5)
are estimated on a uniformly sampled 𝑧-domain grid. As a result, the components
of the Fourier vector in Eq. (4.3) are of the form

e−2𝑖𝑧𝑙𝑘𝑛 = e−2𝜋𝑖
𝑙
𝐿𝑛 , (4.13)

with 𝑙 and 𝑛 integers that go from 0 to 𝐿 − 1 and 𝑁𝑔 − 1 respectively, implying a
discrete space Fourier representation for the Fourier vector.

The specific structure of the given data as well as the Fourier vector, Eqs. (4.7)
and (4.8) respectively, are such that the given data consists of a continuous data
segment y𝑔. This allows for the use of the fast IAA (FIAA) method for the esti-
mation of the reflectivity coefficients 𝑎(𝑧𝑙). Thus Eqs. (4.5) and (4.6) are actually
implemented in a computationally efficient way using fast Toeplitz matrix algebra
and the Fast Fourier Transform (FFT) [18, 23]. The computational complexity of a
single iteration of the FIAA algorithm is given by

𝒞1 (𝑁𝑔 , 𝐿) ≈ 𝑁2𝑔 + 12𝑁𝑔 log2𝑁𝑔 + 1.5𝐿 log2 𝐿 , (4.14)

which compares favorably against the 𝒪 (𝑁3𝑔 + 𝑁2𝑔𝐿) complexity required by the
brute force approach.

Moreover, the missing data consist of continuous data segments y𝑚𝐿 and y𝑚𝑅
which are actually on the left-hand side and the right-hand side of the interpolated
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spectral data, respectively. Thus, we implement Eq. (4.12) using fast Toeplitz
matrix operations and the FFT, resulting in an additional computational cost of

𝒞2 (𝑁𝑔 , 𝐿) ≈ 𝑁2𝑔 + 6𝑁𝑔 log2𝑁𝑔 + 𝐿 log2 𝐿 . (4.15)

Consequently, the overall computational cost of the proposed fast MIAA for the
recovery of the missing OCT data is given by

𝒞 (𝑁𝑔 , 𝐿) = 𝑞𝐹𝐼𝐴𝐴𝒞1 (𝑁𝑔 , 𝐿) + 𝒞2 (𝑁𝑔 , 𝐿) , (4.16)

where 𝑞𝐹𝐼𝐴𝐴 is the number of FIAA iterations. Usually, 10 iterations are sufficient
for convergence [18, 22, 23].

B-scan OCT imaging is performed by processing consecutive A-scans as columns
in an image matrix. Although these columns can be processed independently to
produce the corresponding sequence of depth profiles, a warm start initialization
procedure can be applied that drastically reduces the required amount of iterations.
We use the data covariance matrix of the previously processed A-scan for the ini-
tialization of the currently processed A-scan as it is expected that successive A-lines
have only a slight variation to each other as they partially probe the same sample
structure. We called this method the recursive fast IAA (RFIAA) [18, 24] and this
approach generates results without any substantial loss in performance using only
2 iterations. When RFIAA is used in place of FIAA, the computational complexity of
the proposed fast recursive MIAA for the recovery of the missing OCT data is given
on the average (per A-scan) by

𝒞 (𝑁𝑔 , 𝐿) = 2𝒞1 (𝑁𝑔 , 𝐿) + 𝒞2 (𝑁𝑔 , 𝐿)
≈ 3𝑁2𝑔 + 18𝑁𝑔 log2𝑁𝑔 + 2.5𝐿 log2 𝐿 . (4.17)

Finally, we note that the proposed fast MIAA OCT missing data recovery ap-
proach requires the use of a grid size 𝐿 at least as large as the desired target (given
and missing) spectrum length, i.e. 𝐿 ≥ (𝑁𝑔 + 𝑁𝑚). The use of grid size of length
𝐿 = 2(𝑁𝑔 + 𝑁𝑚) proved to be adequate in our application.

4.2.2. Interferometric synthetic aperture microscopy
The 3D measured signal in point-scanning OCT can be described as the convolution
of a space-variant complex PSF ℎ(𝑥, 𝑦, 𝑧; 𝑘) with the scattering potential 𝑓(𝑥, 𝑦, 𝑧)
of the sample [1] as

𝑆(𝑥, 𝑦; 𝑘) =∭ℎ(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧 − 𝑧′; 𝑘)𝑓(𝑥′, 𝑦′, 𝑧′)𝑑𝑥′𝑑𝑦′𝑑𝑧′, (4.18)

where 𝑥 and 𝑦 are the lateral coordinates of the beam location, 𝑧 = 0 is the focus
depth, and 𝑘 is the measured wavenumber corrected for the refractive index of the
sample.

By taking the lateral Fourier transform and using asymptotic approximations for
near-focus and far-from-focus cases, Eq. (4.18) can be rewritten as [1, 25]

𝑆(𝑘𝑥 , 𝑘𝑦; 𝑘) = 𝐻(𝑘𝑥 , 𝑘𝑦; 𝑘)∫𝑓(𝑘𝑥 , 𝑘𝑦 , 𝑧′)e
𝑖√4𝑘2−𝑘2𝑥−𝑘2𝑦𝑧′𝑑𝑧′, (4.19)



4.3. Methods

4

81

where 𝐻(𝑘𝑥 , 𝑘𝑦; 𝑘) is the space-invariant optical transfer function, and the integral
is the Fourier transform in the 𝑧-direction of 𝑓(𝑘𝑥 , 𝑘𝑦 , 𝑧) with wavenumber

𝑘𝑧 = √4𝑘2 − 𝑘2𝑥 − 𝑘2𝑦 . (4.20)

For Gaussian beams 𝐻(𝑘𝑥 , 𝑘𝑦; 𝑘) is relatively smooth and acts as an amplitude opti-
cal transfer function. Thus, the scattering potential in 𝑘-space can be approximated
as

𝑓(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) ≈
𝑘𝑧

√𝑘2𝑧 + 𝑘2𝑥 + 𝑘2𝑦
𝑆(𝑘𝑥 , 𝑘𝑦; 𝑘)|𝑘= 12√𝑘2𝑥+𝑘2𝑦+𝑘2𝑧

, (4.21)

where the resampling from 𝑘 to 𝑘𝑧, based on the lateral component of the measured
𝑘, corrects for the depth-dependent defocus and the pre-factor provides the scaling
for the change in coordinates.

Interpreting ISAM in the 𝑘-space description, the OCT signal for a wavenum-
ber 𝑘 is obtained along the Ewald sphere in the (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)-space with its center
in the origin and a radius of 2𝑘, the factor 2 accounting for the backscattering ge-
ometry [26]. Rather than assuming that 𝑘𝑧 = 2𝑘, which is done when the axial
reconstruction is considered independent from the lateral spatial frequency, ISAM
places the data at its true 𝑘𝑧 coordinate as given by Eq. (4.20). After interpolation
to a linear grid in 𝑘𝑧, see Fig. 4.1(f), the refocused image with depth-invariant res-
olution can be obtained by taking a 3D inverse DFT of 𝑓(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧), see Fig. 4.1(g).

4.3. Methods
4.3.1. Experimental setup
Figure 4.2 shows a schematic overview of the custom build high-resolution OCT
setup. Light from the fiber-coupled green superluminescent diode (EXS210118-01,
Exalos) is coupled into a 50:50 wideband fiber coupler (TW560R5A2, Thorlabs), that
distributes the light to the reference and sample arm. The reference arm consists
of a collimator lens (AC256-050-A, Thorlabs), a mirror, and an iris to control the
reference arm light power. A fiber-based polarization controller (FPC560, Thorlabs)
in the reference arm is used to align the reference arm polarization with that from
the sample arm, thus optimizing the interference signal. In the sample arm, a
collimator lens (AC080-020-A, Thorlabs) gives a Gaussian beam with a waist of
3.28 mm. Two galvo mirrors (RTA-AR180, Newson, Belgium) are placed around the
back focal plane of a scan lens (CLS-SL, Thorlabs) that is followed by a matched
tube lens (ITL200, Thorlabs) for telecentric scanning and an objective lens (10x Plan
Apochromat, Mitutoyo) with an NA of 0.28 and a working distance of 34.0 mm. The
11.2 mm diameter aperture of the objective lens is almost completely filled with the
beam (expanded by the scan lens and tube lens) that has a waist diameter of 9.4
mm. The ratio between the scan angle and lateral displacement of the focus was
experimentally calibrated using a resolution test target (R1DS1N, Thorlabs) as a
sample. The obtained values give a lateral FOV of 1.28 mm × 1.35 mm for the ±5∘
scan range of the galvo mirrors, which is close to the theoretical FOV of 1.22×1.22
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Figure 4.2: Schematic drawing of the experimental setup. SLD: superluminescent diode, BS: fiber
beamsplitter, PC: polarization control, CL: collimator lens, Ir: Iris, M: mirror, GM: galvo scan mirrors,
SL: scan lens, TL: tube lens, OL: objective lens, SH: sample holder, BE: beam expander, G: grating, FL:
focusing lens, CA: Line-scan camera.

mm2. The light from the reference and sample arm is recombined with the fiber
coupler and guided to the spectrometer.

In the custom-build spectrometer, the light from the fiber is collimated with
a collimator lens (F220APC-532, Thorlabs), expanded by a beam expander (ACN-
127-A and AC508-300-A), and projected on a 50.8 mm diameter volume phase
holographic grating with 1800 lines/mm (Wasatch Photonics, USA). The dispersed
beam is imaged on a 6144-pixel line-scan camera (raL6144-80km, Basler, Germany)
with a focusing lens consisting of two identical achromatic doublets (AC508-750-A,
Thorlabs). The large beam diameter on the grating combined with the optics design
based on simulations with Zemax ensured a good spectral resolution.

The chirp values for 𝑘-linearization were obtained from the difference in the
unwrapped phase from two averaged A-scans with a mirror on either side of the
zero-delay in the sample arm [27]. The dispersion mismatch was determined from
a measurement of a single mirror with the phase fitted with an 8-order polynomial.
The fitted phase deviation was used for dispersion compensation by multiplying
the interference signal with a complex exponential of the phase difference [28].
To obtain sufficient SNR over the entire spectral width of the spectrometer, the 𝑘-
linearization and dispersion mismatch calibration was performed using light from
a fiber-coupled supercontinuum light source (NKT EUL-10, NKT photonics). The
depth sampling density was determined from a linear fit on the peak locations of
32 averaged A-scans with a mirror position translated over a total range of 4.4
mm. The maximum imaging depth of 8.27 mm in air was then used to determine
the linearized 𝑘-sampling density at 190 m−1. A diode laser at 532 nm (CPS532,
Thorlabs) was used as a reference wavelength to obtain the physical 𝑘-values for
the linearized spectrum. The full spectrometer range is 48.7 nm (from 488.3 nm to
537.0 nm) with a sampling density of 7.9 pm per pixel. Using a fit on the sensitivity
decay [29], the effective spectral resolution was determined to be 13.4 pm. The
sensitivity decay is 6 dB at 4.1 mm (𝑧𝑚𝑎𝑥/2) and 13 dB at 6.2 mm (3𝑧𝑚𝑎𝑥/4).
For the OCT measurements with the SLD, only 3072 of the 6144 pixels were used
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between 501.3 nm and 525.6 nm as the intensity is insignificant outside this region.
The measured FWHM of the light source intensity spectrum is 6.5 nm. The FWHM
of the axial PSF in air was measured to be 11 µm.

The camera was triggered per B-scan on the framegrabber (PCIe-1433, Na-
tional Instruments) by the galvo mirrors, the angular sweep speed being adapted
to the line rate of the camera. The data acquisition was done with a custom script
in Python 3.7, operated with Anaconda Spyder on a desktop computer. Also, all
simulations and pre-processing of the data was done in Python 3.7.

Samples and acquisition settings
Two samples were used to evaluate the performance of the proposed method. The
first test sample consisted of TiO2 powder (Sigma Aldrich) in gelatin (Dr. Oetker,
the Netherlands). A droplet of a diluted suspension of TiO2 particles in water was
added to the heated water-gelatin mixture. The mixture was poured into a custom
mount, covered by a coverslip to create a flat top surface, and cooled down to
room temperature. The sub-resolution particles were used to characterize the 3D
resolution.

The second sample was a leaf disc that was punched out of a lettuce leaf. The
leaf disc was water infiltrated by putting it in a syringe with water and lowering the
pressure. When the pressure is released, the gas-exchange cavities are filled with
water, reducing the refractive index contrast [30]. The leaf disc was mounted in
water between two coverslips, at a sufficient distance from the coverslip to avoid
saturation artifacts from the coverslip reflection.

From each sample a volume of 512×512 scan lines was obtained over a lateral
area of 0.225×0.225 mm2, giving a lateral sampling of 0.44 µm. The exposure time
was set to 80 µs, at a line acquisition rate of 11.8 kHz. The large exposure time
was needed because the power on the sample was measured to be only 170 µW,
probably due to a limited coupling efficiency between the source and the fiber
coupler/splitter.

4.3.2. OCT signal simulations
Three-dimensional OCT data was simulated by combining 1D OCT spectrum simu-
lations [18, 21] with the intensity and phase of a Gaussian beam. The waist in the
focus of the Gaussian beam was chosen based on the experimental beam width
in the back-focal plane of the objective and the propagation to the relevant depth.
The aperture edge is chosen where the Gaussian beam intensity is 1/e2, giving an
effective NA of 0.235 with the 9.4 mm waist diameter. Then the waist in focus can
be calculated as

𝜔0 =
𝜆𝑐
𝜋NA , (4.22)

where 𝜆𝑐 is the center wavelength. The OCT interference signal for a discrete set
of reflectors is

𝐸𝑠(𝑥, 𝑦, 𝑘) = √𝑆0(𝑘)∑
𝑗
𝑎𝑗 (

𝜔0
𝜔𝑧𝑗

)
2

e
−2

(𝑥−𝑥𝑗)2+(𝑦−𝑦𝑖)2

𝜔2𝑧𝑗 e𝑖2𝑘𝜁𝑗(𝑥,𝑦), (4.23)
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where 𝑥 and 𝑦 are the lateral coordinates of the scan beam. The scatterer 𝑗 has
lateral coordinates 𝑥𝑗, 𝑦𝑗 and scattering amplitude 𝑎𝑗. The variable

𝜔𝑧𝑗 = 𝜔0√1 + (
Δ𝑧𝑗
𝑧𝑅
)
2

(4.24)

is the beam waist at the scatterer depth 𝑧𝑗, in which Δ𝑧𝑗 = 𝑧𝑗 − 𝑧𝑓 is the distance
from focus,

𝑧𝑅 =
𝜋𝜔20
𝜆𝑐

(4.25)

is the Rayleigh length of the Gaussian beam, and 𝑆0(𝑘) is the source spectral density,
which is obtained from the experimental data. The travel distance 𝜁𝑗(𝑥, 𝑦) to the
scatterer is determined from the phase of a Gaussian beam:

𝜁𝑗(𝑥, 𝑦) = 𝑧𝑓 + Δ𝑧𝑗 +
𝜆𝑐
2𝜋 arctan(

Δ𝑧𝑗
𝑧𝑅
) + (𝑥 − 𝑥𝑗)

2 + (𝑦 − 𝑦𝑗)2

2Δ𝑧𝑗 (1 + (
𝑧𝑅
Δ𝑧𝑗
)
2
)
, (4.26)

where the first two terms add up to the depth of the scatterer, the third term is the
Gouy phase, and the last term accounts for the curvature of the Gaussian beam.

The OCT interference spectrum for each lateral position (𝑥, 𝑦) is then calculated
as

𝐼(𝑥, 𝑦, 𝑘) = |𝐸𝑠(𝑥, 𝑦, 𝑘) + 𝐸𝑟(𝑘)|
2 − |𝐸𝑟(𝑘)|

2 − |𝐸𝑠(𝑥, 𝑦, 𝑘)|
2 , (4.27)

where 𝐸𝑟(𝑘) = √𝑆0(𝑘) is the reference beam field. The simulated OCT image is
obtained by taking the inverse DFT of 𝐼(𝑥, 𝑦, 𝑘) from 𝑘 to 𝑧. Subsequently, com-
plex Gaussian white noise is added with a standard deviation that depends on the
intensity of the scatterers and the desired SNR.

4.3.3. Data processing
Conventional OCT processing and phase correction
The OCT spectral data was first processed in the conventional way by subtracting
the reference spectrum, interpolating to a linear grid in 𝑘-domain, multiplying with a
dispersion correction vector, and performing an inverse DFT. The reference spectra
were obtained by laterally averaging the interference signal of a B-scan, excluding
the spectra with saturation.

As ISAM requires lateral phase stability, the experimental data was corrected
for phase drift during the measurement using a coverslip interface as a reference.
The phase of the coverslip was determined by putting the image outside the sig-
nal of the coverslip at the positive depth, everywhere to 0, taking the DFT of the
complex-valued OCT data in the axial direction, unwrapping the phase, and ap-
plying a linear fit to the unwrapped phase. The difference between the fit and a
reference slope was corrected for by multiplying the entire spectrum with a com-
plex exponential, such that after correction, the coverslip became a flat, horizontal
plane with a constant phase.
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To reduce memory requirements and computational complexity, the complex-
valued image over an axial region of interest of 200 pixels (0.81 mm in water) was
selected for further processing.

RFIAA and MIAA processing
The axial DFT of the phase-corrected image was used as input for the RFIAA spectral
estimation algorithm. The interference signal was normalized using the reference
spectrum. For the experimental data, this was obtained from the lateral average of
the absolute value of the interference signal of the volume. Subsequently, RFIAA
was applied on a 128-pixel-long central part of the spectrum with the highest inten-
sity. The RFIAA reconstruction grid length 𝐿 was 800 pixels, four times the original
200-pixel grid length, giving an increase in spatial sampling by a factor of 4 with
respect to the original image. The number of iterations for RFIAA was set to 10 for
the first line and 2 for subsequent A-lines that were initialized with the covariance
matrix of the previous A-line. For MIAA, the RFIAA reconstruction grid length 𝐿
was chosen eight times longer than the original grid length, such that number of
samples 𝑁𝑚+𝑁𝑔 is four times the length of the 200-pixel long original image. After
RFIAA, the MAP estimation was applied, followed by an FFT, a circular shift, and
the selection of 𝑁𝑚 values to obtain the extrapolated spectra.

To reduce side lobes in the axial PSF, the edges of the MIAA extrapolated spec-
trum were tapered with a 200-pixel-long squared cosine window on both sides,
bringing the intensity smoothly to 0. After the lateral Fourier transform, the high
lateral frequencies, mainly containing side lobes and noise, were apodized with a
circular window with a squared cosine-shaped edge with an inner radius of 110 pix-
els (3.1 µm−1) and an outer radius of 210 pixels (5.9 µm−1). While the side-lobes
were significantly suppressed, the effect on the main lobe width for the experi-
mental data was barely noticeable, while the effect on the simulation data was
moderate.

RFIAA and MIAA were implemented in MATLAB (R2020a). The processing was
done on a Dell Precision 5820 desktop computer with an Intel Xeon W-2223 CPU and
32 GB RAM. The processing time for the volume with 512×512 A-lines was around
113 s for RFIAA and 181 s for MIAA, 0.22 s and 0.35 s per B-scan respectively.

ISAM data processing
ISAM requires the focal plane depth and the sample refractive index as input pa-
rameters. The focal plane depth index was obtained by visually inspecting where
the image appeared most sharp. The used refractive index was set to 𝑛 = 1.33,
the refractive index of water at 900 nm wavelength and room temperature [31].
The sampling period of 𝑘𝑧 was twice that of 𝑘, such that 𝑘𝑥 = 𝑘𝑦 = 0, 𝑘𝑧 = 2𝑘
coincides with the original grid. The grid of 𝑘𝑧 was extended such that the 𝑘-space
contained all the interpolated data. After MIAA and ISAM the 𝑧 grid had a length
of 1029 pixels in depth, resulting in an axial sampling density of 0.79 µm per pixel.

ISAM processing was implemented in MATLAB and took around 60 s per volume
of 512 × 512 A-lines. The processing time for the conventional DFT reconstruction
with ISAM was the same, as zero-padded data was used to obtain the same axial
sampling density as with MIAA.
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OCT resolution analysis
The 3D resolution was quantified from the images of the simulated and measured
point scatterer objects. The positions of the scatterers were automatically deter-
mined using a 2D local maximum detection algorithm [32] in the 𝑥𝑦-plane and the
𝑥𝑧-plane. For the local maximum detection, the image is first divided by the square
root of the laterally averaged intensity, that is axially smoothed with a 40-pixel
standard deviation Gaussian kernel. This reduces the intensity difference between
the in-focus and out-of-focus regions and enables the use of a global threshold in
the final scatterer selection. Then, the difference between two local average filters
with a small (4-pixel diameter) and a large (8-pixel diameter) kernel is calculated.
The local maximum position is obtained where the value of this difference is the
maximum over a 12-pixel-diameter kernel region. A global threshold of 1/2000 of
the maximum intensity in the image excludes noise from the detected local maxima.
The 3D location of the scatterers is where the 2D local maxima of the orthogonal
planes overlap.

For each 3D scatterer position a 21×21×21 pixel (16.6×9.2×9.2 µm3) subvolume
is selected. If the maximum intensity inside the volume lies outside the 3 × 3 × 3
center pixels, the volume is excluded as it contains another scatterer with a higher
intensity that would contaminate the fit. For DFT and RFIAA without ISAM, the
locations from the ISAM images were used with a 31× 201× 201 pixels (24× 88×
88 µm3) subvolume, to capture the full defocused PSF.

To quantify the resolution, a 3D Gaussian function was fitted to the intensity
distribution in the selected subvolumes using the least square curve fitting func-
tion lsqcurvefit. The standard deviation in every direction was then used to
calculate the full width at half maximum (FWHM) which serves as a resolution mea-
sure. The SNR for each scatter was determined by dividing the peak intensity of
the Gaussian fit by the variance of the noise amplitude in a manually selected area
of the image without signal.

Computational adaptive optics
Computational adaptive optics (CAO) was implemented using the sub-aperture cor-
relation method [33] implemented on en face planes of the OCT data. The complex-
valued OCT en face images were Fourier transformed in the lateral direction to ob-
tain the field in the pupil plane. The field in the pupil plane was shifted such that the
lateral center of mass was in the center [34], after which it was transformed back
to the spatial domain. These en face images were divided into four square areas,
each of which was independently corrected to also address shift-variant aberra-
tions. The image from each area was lateral Fourier transformed to obtain the field
in the pupil plane. In the pupil plane field, 45 circular sub-apertures were defined
on a 7 × 7 grid (with the four corners excluded) within a circular aperture with a
radius of 1 µm−1. With sub-aperture radii equal to the lateral spacing between the
sub-aperture centers, the sub-apertures were partially overlapping. After inverse
Fourier transformation, the magnitude images of each sub-aperture were cross-
correlated with the magnitude image of two randomly chosen sub-apertures. The
obtained lateral shift between the images is proportional to the difference in the lo-
cal slope of the aberration between both sub-aperture positions. The obtained slope
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differences were fitted with the 𝑥 and 𝑦 gradient of 12 Zernike polynomials (from
second to fourth order) [33]. By using two randomly chosen sub-apertures instead
of the center aperture as reference, the sensitivity to speckle was reduced [34, 35].
Magnitude OCT images were used rather than intensity OCT images to increase the
sensitivity to the entire object structure rather than a few high-intensity peaks.

As the speckle pattern from non-overlapping sub-apertures is independent, im-
ages with strong speckle structures can give erroneous shift estimates, even when
using the more robust correlation with multiple randomly chosen apertures [35].
As the aberrations are expected to change smoothly over depth, the robustness
was further increased by using a weighted moving average in the depth direction
over the Zernike coefficients. A 10-pixel sigma Gaussian kernel, combined with
the inverse of the least squares fit error for weighting, ensured both smoothness
and a lower weight for unreliable coefficients. The CAO was completed by phase
conjugation in the pupil plane using multiplication by a complex exponential to ob-
tain a flat phase profile. The aberration-corrected en face OCT image was then
obtained by inverse Fourier transformation. As ISAM removes most of the defocus,
the magnitude of the aberrations was limited and it was not needed to iterate the
procedure.

CAO was implemented in Python 3.7 and took around 4 s per en face image (1 s
per sub-image).

4.4. Results
4.4.1. Point scatterer sample OCT imaging
Figure 4.3 shows the OCT images of the gelatin phantom filled with TiO2 particles.
The TiO2 particles are well visible in the OCT images as they have a high intensity.
The B-scans show a band of high-intensity background near the focal plane. They
come from impurities in the gelatin that appear in the focal plane depth range
because of the high light intensity.

The DFT method shows vertical stripes near the focus in the 𝑥𝑧-plane, Fig. 4.3(a)
due to the mismatch between the axial and the lateral resolution. The en face
image in the focal plane, Fig. 4.3(b), shows many spots at a resolution around the
diffraction limit. Outside the small focal region, Fig. 4.3(c), large blurred spots are
visible in the 𝑥𝑧-plane and the out-of-focus en face image.

RFIAA enhances the axial resolution, giving almost isotropic-shaped spots in the
focal plane. The in-focus en face image (b) shows fewer scatterers as the optical
depth sectioning due to the spectral estimation is improved. However, as RFIAA
does not account for the defocus, there is still a large lateral blur outside the focal
range as seen in (a) and (c).

With DFT+ISAM, the signal outside the focal region is effectively refocused,
giving narrow vertical stripes (a) or points in the en face image (c). The out-of-
focus lateral resolution is similar to that in focus, as expected from the correct
implementation of ISAM. Due to the poor axial resolution, the en face image shows
many scatterers and the B-scan image has limited quality.

Combining MIAA and ISAM both improves the axial resolution and extents the
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Figure 4.3: OCT images of the TiO2 sample processed with the different methods: (a) Shows B-scans.
(b) Shows sections of the en face image in focus (blue line in (a)). (c) Shows the en face image 82 µm
above focus (red line in (a)). The white arrows indicate the scatterers that are shown in Figure 4.4(a-f)
in more detail.

depth of field. The axial resolution and optical sectioning in focus are similar to
that of RFIAA. Outside the focal depth range, ISAM refocuses the signal, which is
visible in the narrow spots in the 𝑥𝑧-plane (a) and the small dots in (c). In the
en face images with MIAA+ISAM, fewer scatterers are visible than with DFT+ISAM
due to the improved axial resolution. Some background signal is visible around
the scatterers at the location of the original defocused spot, which we attribute
to residual phase noise in the MIAA reconstruction at low SNR, giving incoherent
signals that cannot be refocused with ISAM. As the intensity is much lower than
that of the scatterer, the impact on the image quality is limited.

The imaging results in Figure 4.3 qualitatively show that MIAA+ISAM success-
fully combines the axial resolution improvement of IAA-based SE-OCT with DOF
extension using ISAM. The next section analyzes these results quantitatively.



4.4. Results

4

89

Figure 4.4: The lateral and axial OCT resolution for the various computational methods. The top and
middle row show an example point scatterer at focus (white arrow in Fig. 4.3(b)) and 82 µm above
focus (white arrow in Fig. 4.3(c)). (a,d) Show the 𝑥𝑧 cross sections, (b,e) the lateral and (c,f) axial line
cross sections at the white dotted line. The circles indicate the OCT intensity and the solid line is the
corresponding 3D Gaussian fit. (g) Shows the SNR as a function of depth from focus, the experimental
data being grouped per 20 µm depth range. (h-i) Show the resolution in the axial and the lateral direction
for experimental and simulated data. In (i) the lines for the simulated data without (DFT and RFIAA)
and with ISAM (DFT+ISAM and MIAA+ISAM) overlap.

4.4.2. OCT resolution analysis
Figure 4.4 shows the results from the resolution analysis of the OCT images of the
TiO2 sample. Figure 4.4(a-f) shows two exemplary point scatterers reconstructed
with the four different methods and fitted with a 3D Gaussian function. The in-focus
scatterer (a-c) is imaged with relatively high resolution for all four methods and the
line plots indicate that the PSF is well described by the Gaussian model. The axial
resolution improvement with MIAA+ISAM is, with an axial resolution of 1.45 µm,
a factor 5 better than without MIAA. Outside focus (d-f) DFT and RFIAA without
ISAM give very blurry spots because of interference between the signals of several
defocused scatterers and because the PSF width is larger than the chosen small
volume. This also gives unreliable Gaussian fitting, see (e-f), thus we excluded
these methods from the further data analysis. MIAA+ISAM is, with a resolution of
4.0 µm, a factor 1.8 better than without MIAA. The smaller improvement in axial
resolution compared to in focus is caused by the lower SNR in the out-of-focus
region.
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The 809 automatically detected points that were at the same position (±1 pixel in
the axial direction) for both DFT+ISAM and MIAA+ISAM were used for the analysis.
Simulations of 48 point scatterers divided over 4 vertical columns that span a 450 µm
depth range were used to further interpret the experimental results. Here, also
DFT and RFIAA without ISAM were included as the simulated scatterers were well-
separated.

Figure 4.4(g) shows how, for all methods, the SNR peaks in focus and decreases
further away from focus. For the experimental DFT/MIAA + ISAM data, the SNR
in focus is on average around 60 dB with peaks to 80 dB, from where the SNR
decreases to 40 dB at 150 µm from focus. The error bars indicate the lowest and
highest SNR within each 20 µm depth interval. The large variation, especially in
focus can be attributed to variation in the scattering amplitude of the TiO2 particles.
Both DFT and MIAA with ISAM are in good agreement with the simulations and have
a high SNR outside of focus due to the ISAM refocusing. MIAA+ISAM has a slightly
lower SNR at the edges. The simulations for DFT and RFIAA show that in focus,
the SNR is similar, outside focus it drops strongly because the signal is smeared out
over a large lateral range and not refocused with ISAM. The SNR with RFIAA is a
bit lower due to a bit higher noise variance. The SNR of the DFT simulation drops
to 10 dB at 200 µm from focus. The coherence of the low-intensity signals remains
however sufficient for applying ISAM, which then improves the SNR outside focus
with 15 to 30 dB.

Figure 4.4(h) shows the axial resolution as a function of the depth from focus.
As expected, DFT+ISAM gives a depth-independent axial resolution of around 8 µm,
slightly below the bandwidth-limited resolution of 8.1 µm. Simulations show a sim-
ilar depth-independent axial resolution. ISAM improves the axial resolution with
about 1 µm because it maps high lateral frequencies to lower axial wavenumbers
𝑘𝑧, giving an effective broadening of the spectrum (see Fig. 4.1(g)). This effect is
especially significant for sources with a narrow bandwidth as the relative curvature
in 𝑘 space is large.

MIAA+ISAM gives a significant improvement in the axial resolution to around
1.4 to 2 µm in focus and increasing to 4.5 µm at 150 µm distance from the focus.
The variation in axial resolution with depth can be explained by the variation of the
SNR with depth. An SNR before MIAA above 50 dB gives a factor 5 improvement,
an SNR of 30 dB gives a factor 3 improvement and an SNR of 10 dB reduces the
improvement to a factor 1.5. The improvement in axial resolution, especially for
SNR above 30 dB, brings it closer to being similar to the lateral resolution. The
simulations show that for RFIAA and MIAA the in-focus axial resolution of 0.95 µm
is slightly better than the experimental resolution. The poorer experimental axial
resolution could be attributed to the background scattering of the gelatin, which
reduces the local SNR. The 0.95 µm is close to the theoretical resolution of 0.85 µm,
assuming a uniform SE bandwidth extension. Outside focus, RFIAA without ISAM
gives a slightly worse axial resolution than MIAA+ISAM, because of the spectrum
broadening with ISAM.

Figure 4.4(i) shows the OCT lateral resolution analysis. Both DFT and MIAA in
combination with ISAM give a depth-independent resolution of around the diffrac-
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tion limited value of 0.85 µm. This shows that MIAA sufficiently preserves coherent
phase information for applying ISAM. The variation in resolution can be caused by
a variation in scatterer size or by wavefront aberrations. These aberrations, which
are also the cause of the large deviation at depths below focus, can be compu-
tationally corrected [9, 35], as we will show in section 4.4.4. As the deviation is
similar for DFT and MIAA, it is not caused by MIAA. Simulations show that with-
out ISAM, the nominal DOF is only about 25 µm. DFT and MIAA in combination
with ISAM give a strong improvement in the resolution outside the focal region.
Their depth-independent lateral resolution is around 0.74 µm over the full simu-
lated depth range of 450 µm. The simulated resolution is at the lower limit of the
experimental results because the simulations do not include the physical aperture
of the objective lens. However, due to the lateral apodization during processing,
the difference is limited.

The results on the lateral resolution clearly show the effectiveness of ISAM to
extend the depth of field, also after spectral estimation. The shown extended DOF is
around 400 µm (a factor 16 extension) for experimental data, and at least 450 µm
(a factor 18 extension) for the simulation data. Note that the DOF with ISAM is
more constrained by the SNR limiting the axial resolution than the remaining lateral
blurring.

4.4.3. Plant leaf computational OCT imaging
Figure 4.5 shows the results for a more realistic object, a lettuce leaf. The com-
parison between DFT and MIAA, both in combination with ISAM clearly shows the
improvement in axial resolution and image quality that our method achieves. While
the plant cells in Fig. 4.5(a) barely can be distinguished with DFT+ISAM, they are
clearly visible with MIAA+ISAM. The improved optical sectioning ability is also clear
from the en face images, Fig. 4.5 (c), where MIAA+ISAM better visualizes the
open leaf structure. This allows for clearer visualization of the plant cells and sub-
cellular structures. An example of the improved visualization of open structure with
MIAA+ISAM is shown in the zoom-in. The object has a better contrast between
the water-filled intra-cellular space and the cell walls. The cell walls also appear
narrower with MIAA+ISAM, probably because a tilted cell wall is laterally smeared
out due to the poor axial resolution of DFT+ISAM.

Figure 4.5(b) shows a close-up of the OCT B-scan (a) for all four methods. The
large asymmetry between axial and lateral resolution makes it hard to distinguish
the cell walls in both DFT-based methods. RFIAA already makes the structure
much clearer. However, the lateral blurring and intensity fluctuations caused by the
interference of blurred signal significantly decrease the image quality, especially at
the top half. By combining the axial resolution improvement of spectral estimation
with the out-of-focus lateral resolution enhancement of ISAM, the cellular structures
are also clearly imaged in the top half of the inset.

The effect of ISAM is even clearer from the en face images in Fig. 4.5(d), which
are located around the bottom of the epidermal cell layer, the green dashed line in
Fig. 4.5(a). Without ISAM, the image is significantly blurred and does not reveal any
plant structure. ISAM refocuses that into a clear image of the plant tissue structure.
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Figure 4.5: OCT imaging of the lettuce leaf. (a) An 𝑥𝑧-cross section of the 3D leaf reconstruction, with
(b) the zoom-in at the yellow square for all four methods. (c) The en face image at the white dashed
line in (a), the white dashed line indicates the intersection between (a) and (c). The bottom images
show the zoom-in at the blue square. (d) The en face image at the bottom of the epidermal cell layer
indicated by the green dashed line in (a), for all four methods. The green dashed line indicates the
intersection between the images of (a) and (d). (e) The A-scan at the vertical white line in (a) for all
four methods, the points indicate OCT intensity, while the solid line is a 2-peak Gaussian fit through the
intensities.

However, with DFT+ISAM the structures of different depth layers are merged. For
example, the structures indicated with the green arrows have their peak intensity in
a plane 6 µm higher up, the structure at the red arrow shows up in the MIAA+ISAM
image 2.5 µm up and the structure indicated with the white arrow is located 4 µm
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lower. MIAA+ISAM successfully sections out the signal from a narrow depth region
and refocuses it with a good lateral resolution.

Figure 4.5(e) shows the A-line profiles at the vertical white line in (a). With
DFT+ISAM in (a) the shape of the cell is not clear because of the poor axial res-
olution, while MIAA+ISAM gives a clear image. The solid lines in (e) correspond
to a 2-peak Gaussian fit of the A-line segments. MIAA+ISAM gives an FWHM of
the peaks of 1.8 µm and 2.1 µm respectively, compared to 7.2 µm and 6.4 µm
for DFT+ISAM, a factor 3 to 4 improvement. Without ISAM, the top layer is not
clearly visible, probably because of destructive interference of defocused signal.
The small shift in peak location with respect to the ISAM methods could be the
result of focusing the curved structure.

The lettuce leaf OCT imaging clearly shows that MIAA+ISAM does not only work
for ideal point scatterers, but also for relevant biological samples with a medium
level of sparsity. This proposed method gives a clear improvement in axial resolution
and image quality, resulting in good-quality images with the cost-effective green
SLD light source that has a bandwidth (FWHM) of only 6.5 nm.

4.4.4. Computational adaptive optics OCT
Though ISAM refocuses the signal outside the focal plane, there can be other aber-
rations and residual defocus. As MIAA+ISAM preserves the phase of the (complex)
signal, computational adaptive optics (CAO) can be applied after MIAA+ISAM re-
construction. Figure 4.6(a-c) shows the results with CAO for the sample with the
TiO2 particles. The most significant Zernike coefficients, for defocus 𝑍20 and pri-
mary spherical aberration 𝑍40 , are displayed in (a) as a function of depth. Most of
the other Zernike coefficients varied around 0. Especially the defocus aberration is
significant with a coefficient up to 2 radians below the focus. Note that the residual
defocus is not due to wrong ISAM implementation as the aberration above focus is
close to 0 for a large depth range. In absence of speckle, the error in the estimated
coefficients is limited. Still, a few outliers of the estimations (blue dots) are visible,
which the weighed moving average (red line) removes.

The en face plane 190 µm below focus (Fig. 4.6(b)) clearly shows the improved
resolution or sharpness of the image after CAO. The improvement is quantified
using 3D Gaussian fits on 983 and 1075 particles, respectively. The histogram
of the lateral FWHM (Fig. 4.6(c)) shows that the aberrated spots with an FWHM
above 1.2 µm are corrected, while the peak value remains at the diffraction-limited
resolution. This correction improves the mean lateral FWHM with 8% to 0.87 µm,
but the improvement for the aberrated spots is of course much more significant.
Most improvement is obtained for depths below focus, pushing the large spot sizes
that were seen in Figure 4.4(i) back to diffraction-limited values.

The lettuce leaf sample has more severe aberrations than the sample with the
TiO2 particles. The large defocus aberration, shown in (d), could potentially be
reduced by optimizing ISAM settings, but that effect would never fully compensate
for the defocus as the aberration is not fully linear as a function of depth. Moreover,
manual optimization of the focus depth for ISAM did not give a better image over the
full depth range. For the plant leaf, the variation in estimated Zernike coefficients
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Figure 4.6: OCT imaging results for computational adaptive optics (CAO) applied after MIAA+ISAM
processing. (a) and (d) show two Zernike coefficients for the top right corner of the FOV as a function
of depth, the blue dots being the estimates per plane and the red line the weighed moving average.
(b) Shows an en face image 190 µm below the focus of the TiO2 particles in gelatin sample before and
after CAO. (c) Shows the histogram of the lateral resolution before and after CAO. (e) Shows an en face
image of the leaf at 24 µm below focus before and after CAO, (f) the inset from (e), and (g) the line-plot
along the green line in (e).

from plane to plane is much larger than with the TiO2 sample due to the presence
of speckle (note the different scale in (a)). The weighed moving average (red
line) reduces the variations and increases the robustness of the CAO. At depths
of >100 µm below focus, the image quality was too poor for reliable aberration
estimates, and even with manually optimized defocus the image quality remained
poor. This may be caused by the accumulation of phase errors in the heterogeneous
medium.

CAO clearly improves the sharpness and quality of the en face image (Fig. 4.6(e)).
The cell walls are imaged much sharper and subtle structures are much clearer vis-
ible, as shown in the inset (f). The line plot (g) shows three peaks corresponding
to cell walls, whose FWHMs improve with a factor 2 from 3.5 µm to 1.6 µm on
average.

The results in Fig. 4.6 show that the data after MIAA+ISAM is of sufficient quality
to apply CAO for further optimization of the resolution.



4.5. Discussion

4

95

4.5. Discussion
In this work, we combined axial resolution improvement using SE-OCT with ISAM
for depth of field extension.

In this discussion, we first consider our motivation for our data processing by
first applying MIAA followed by ISAM. Next, we discuss some limitations of our
approach and explore future opportunities.

Instead of applying spectral estimation on the original spectra (in the 𝑘-direction),
applying it to the ISAM-processed data (in 𝑘𝑧-direction) could have an important
advantage. ISAM improves the SNR of the out-of-focus signal, which would then
result in a better axial resolution with SE-OCT. There are several ways in which
ISAM and SE can be combined. We discuss here two combinations:

1. First applying ISAM, then applying SE from the (𝑥, 𝑦, 𝑘𝑧)-domain to the (𝑥, 𝑦, 𝑧)-
domain.

2. First applying ISAM interpolation, leaving the interpolated data in the (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)-
domain, then applying SE from (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)-domain to the (𝑘𝑥 , 𝑘𝑦 , 𝑧)-domain,
followed by a lateral inverse DFT to the (𝑥, 𝑦, 𝑧)-domain.

The first option would be the most obvious way, but there is a significant compli-
cation with performing the image enhancement in this order. As ISAM maps the
signal at higher lateral spatial frequencies 𝑘𝑥 , 𝑘𝑦 to lower 𝑘𝑧, the spectrum in 𝑘𝑧
will be broader than the spectrum in 𝑘. The amount of broadening and the result-
ing shape is, however, dependent on the lateral frequency content of the object.
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Figure 4.7: Dependence of the axial object spectrum after ISAM on the object shape. (a) OCT point
object intensity before and after ISAM. After ISAM the spectrum bends downward at high lateral fre-
quencies. The spectrum evaluated along 𝑘𝑧 is shifted towards lower 𝑘𝑧 and broadened. A horizontal
plane (b), however, has a narrow lateral spectrum, giving a nearly unaltered axial object spectrum after
ISAM. The white dashed lines in the ISAM spectrum indicate the boundaries of the measured OCT data.
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Figure 4.7 illustrates this with two extreme examples: a point object, in (a), and a
horizontal plane object, in (b). The point object contains many high lateral spatial
frequencies, which ISAM maps to lower 𝑘𝑧 values. After the lateral inverse DFT, this
results in a downshifted and broadened spectrum in the 𝑘𝑧 direction. In contrast, a
plane object contains a narrow lateral spatial frequency spectrum, see Fig. 4.7(b).
ISAM leaves this axial spectrum unaltered as ISAM remapping occurs at lateral fre-
quencies where there is negligible signal. The dependence of the spectral shape
on the local object structure is problematic for SE-OCT as it requires a well-defined
spectral shape for spectral normalization. We observed that applying the processing
in this order resulted in strong side lobes and a poor axial resolution, especially for
structures that had a different spectral content than the used reference spectrum.

The second option does not suffer from axial spectrum ambiguity, but as the
signal of small scatterers in the object is smeared out over a large lateral frequency
range, the SNR will be low and the spectral estimation not effective. Simulations
with this approach showed a lot of artifacts and were thus not satisfactory.

In the proposed method of first applying MIAA followed by ISAM, the data can be
uniformly reshaped using the shape of the source spectrum, which is independent
of the lateral spectral content of the sample. Even though the axial resolution
improvement worsens with the decreasing SNR outside the focal plane, for a large
axial range the improvement is still significant, as shown in the current work.

SE-OCT works best in combination with sparse, high-SNR samples [17, 18, 36].
Thus, the performance of the proposed method to non-sparse samples with low SNR
will probably give less resolution improvement. However, RFIAA showed a faithful
reconstruction of a non-sparse skin sample [18], sharpening the high SNR features
while maintaining a good contrast in the non-sparse tissue. Thus the proposed
MIAA+ISAM, though less effective, may still be advantageous also for less sparse
objects.

A potential disadvantage of MIAA+ISAM is the SNR-caused depth-dependent
axial resolution. However, the variation in axial resolution is not as large as the
lateral blurring without defocus correction. Moreover, the resolution is still better
than the DFT approach over the full depth range.

Using a narrow-band light source greatly simplifies the optical design, especially
of the spectrometer. In this work, we used a custom-built OCT setup, with a custom
high-resolution spectrometer. However, the optical design can be largely simplified
while maintaining similar results. As only 13% of the maximum imaging depth 𝑧max
was used, a reduction by a factor 6 of the spectral resolution or the number of
spectrometer pixels (from 3072 to 512 pixels) could be done without significantly
compromising the imaging results. Moreover, by optimizing the coupling of the fiber
source power or increasing the SLD power, the exposure time could be reduced
allowing for a faster acquisition with a similar SNR. These adaptions would enhance
the applicability of our method.

Another promising hardware adaption could be to add a second SLD and in-
terpolate the signal between the two SLDs using MIAA. If, for example, the blue
SLD at 450 nm (EXS210099-03, Exalos) would be added, the 60 nm in between
the two spectra could be interpolated and the 70 nm wide spectrum would yield an
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axial resolution of 1 µm. This would however require a larger spectrometer which
complicates the design, like with the green-red combination [14].

The presented results demonstrated that the phase accuracy of IAA-based SE-
OCT is sufficient to allow for coherent post-processing using ISAM and CAO. This
opens the door to its application to other coherent or phase-based processing meth-
ods, such as OCT vibrometry [37], polarization-sensitive OCT, and phase-resolved
Doppler OCT imaging at high resolution. CAO could also be combined with induced
astigmatism, to improve the SNR outside the focal plane for a better axial resolution
without compromising the lateral resolution [9].

4.6. Conclusion
In this work, we developed a combined spectral data extrapolation using MIAA with
interferometric synthetic aperture microscopy (ISAM) and computational adaptive
optics (CAO). We applied this method to data from an OCT setup with a narrow,
6.5 nm, bandwidth SLD source at 510 nm and a high numerical aperture. We
obtained a factor 1.8 to 5 axial resolution improvement reaching close to a single
µm axial resolution. We obtained a lateral resolution of 0.8 µm over a depth range
of 16 (experimental) or 18 (simulations) the nominal depth of field. The close to
isotropic resolution resulted in a clear improvement of image quality and optical
sectioning on a relevant biological sample. The results show that the accuracy of
RFIAA spectral estimation OCT is sufficient for coherent post-processing. Using
a computationally efficient implementation of MIAA, the volume image processing
time was in the order of minutes. Our findings pave the way for a wider application
of cost-effective visible range SLD sources with a narrow bandwidth, as well as for
the application of SE-OCT in combination with phase-sensitive OCT imaging.

Data availability
Data and code underlying the results presented in this chapter are available in
Ref. [38].
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5
In-vivo label-free 3D OCT

imaging of downy mildew in
plant leaves

Microscopic imaging is a powerful tool to study plant-pathogen interactions.
However, it often relies on invasive histological techniques like tissue clearing
and staining or, for in-vivo imaging, on transgenic pathogen strains express-
ing fluorescent markers. Optical coherence tomography (OCT) can perform
microscopic in-vivo imaging without requiring fluorescent markers. However,
conventional OCT lacks specificity to distinguish plant tissue from pathogen
tissue. Here, we demonstrate dynamic OCT (dOCT) to create in-vivo func-
tional 3D contrast for Bremia lactucae hyphae. The downy mildew pathogen
in lettuce displays a high signal in dOCT amplitude fluctuation frequencies
between 0.7 and 4.8 Hz and less in other frequency bands. We use this
dynamic contrast to image B. lactucae in 3D in live lettuce leaf tissue with
limited sample preparation. Comparison with brightfield microscopy images
of the sample ex-vivo validates the imaging results. The 3D images are seg-
mented to quantify B. lactucae hyphae volume and length in different lettuce
genotypes. A longitudinal study shows the growth of B. lactucae over the
course of several days. These results demonstrate the potential of dOCT for
studying plant-pathogen interactions.

This chapter is in preparation to be submitted: Jos de Wit, Sebastian Tonn, Mon-Ray Shao, Guido
Van den Ackerveken, and Jeroen Kalkman, In-vivo label-free 3D OCT imaging of downy mildew in plant
leaves
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5.1. Introduction
Plant pathogens are a severe problem in agriculture as they can destroy crops or sig-
nificantly reduce their yield [1]. Thus plant resistance against common pathogens,
such as oomycetes, viruses, bacteria, and nematodes, is an essential trait that
growers require for their crops. As pathogens evolve to break plant resistance,
plant breeders seek to develop crops with more robust and quantitative resistance
based on a combination of different plant immune responses [2–4]. Understanding
the interaction between the plant and the pathogen is essential to develop crops
with a higher disease resistance. Imaging is one of the most important tools for
gaining insights into the plant’s resistance mechanisms.

As pathogens interact with the plant at microscopic level, direct imaging of
the plant-pathogen interaction requires a microscopic resolution. Fluorescence mi-
croscopy with transgenic plants or pathogens expressing fluorescent marker pro-
teins for contrast is widely used in plant imaging, particularly in vivo. This approach
is limited by the availability of such transgenic organisms, and therefore excludes
non-model organisms that are not amenable to genetic modification or are very
difficult to genetically transform. One of such non-model plant-pathogen systems
is infection of the oomycete Bremia lactucae, a biotrophic downy mildew pathogen,
in lettuce plant leaves. Lettuce is an important crop and resistance to B. lactucae
is important for growers. The lack of fluorescent markers for B. lactucae requires
non-fluorescent imaging techniques, which are currently not available for in-vivo
imaging. Therefore, the microscopic interaction of B. lactucae with lettuce can only
be studied with destructive histological techniques that do not allow in vivo imag-
ing. Thus there is a need for label-free and in-vivo microscopic imaging that could
visualize the plant-pathogen interaction.

Optical coherence tomography (OCT) is such a label-free in-vivo imaging method
that can image plant tissue at resolutions of pathogen structures. Spectral domain
OCT (SD-OCT) has a large penetration depth inside the scattering plant tissue,
especially when combined with water-infiltration of the plant leaf [5]. However,
conventional OCT imaging based on scattering contrast cannot distinguish between
plant and pathogen tissue.

Here, we propose the use of functional tissue contrast based on biospeckle
intensity fluctuations or dynamic light scattering to enhance the specificity of OCT
imaging. Biospeckle can be used to observe activity of sub-resolution scatterers in
biological tissue and can be implemented with a variety of coherent optical imaging
methods [6, 7]. Biospeckle variance OCT has been applied to detect the response
of plants to stress [8, 9]. However, these studies use the average biospeckle signal
over a large region to distinguish between plants, rather than to create contrast
in 3D within the tissue. Instead of biospeckle variance, which does not directly
incorporate the time scale of the dynamics, we propose to use the time-frequency
amplitude spectrum (AS) of the fluctuations in the OCT amplitude of the scattered
signal. In this method a color is assigned to the average AS in a frequency band.
This allows to create functional contrast at voxel level that, for example, can be
used to distinguish different cell types [10]. This method, also called dynamic OCT
(dOCT), could create or increase contrast between pathogen tissue and plant tissue,
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as they have a different sub-cellular activity.
Here we apply dOCT to visualize B. lactucae colonization in lettuce plant leaves.

First, we demonstrate dOCT imaging of B. lactucae in living lettuce leaves. This
consists of contrast optimization by choosing appropriate frequency bands, proof
of principle dOCT imaging validated by ex-vivo microscopic imaging of the same
sample, and investigating the origin of the contrast with B. lactucae spores.

Second, we apply this method in a quantitative study comparing the B. lactucae
colonization of three lettuce varieties with varying levels of resistance. This quan-
tification includes developing a method to segment and analyze the 3D structure of
the B. lactucae hyphae.

Third, we follow the growth of B. lactucae inside the leaf over the course of a
few days. These experiments show the potential of longitudinal dOCT for label-free
imaging of plant-pathogen interaction and disease severity quantification.

5.2. B. lactucae imaging with dynamic OCT
Figure 5.1(a) shows the dOCT imaging and processing pipeline. First, a series of B-
scans is obtained at the same location over a time of 1.5 seconds. The fluctuations
of the amplitude in time contains information about the small scale dynamics in the
tissue, which characterizes the type of tissue. Static structures give a stationary
signal, while structures with strong sub-cellular motion, such as B. lactucae hyphae,
give a fluctuating signal. Second, the time-scale of the motion is captured in the
AS, which is obtained by applying a Fourier transform. The AS is divided in three
bands: low, medium and high frequency content. The average amplitude in each
band gives the color intensity value for the blue, green and red channel respectively
in a false colour image. Third, this process is repeated at multiple B-scans resulting
in a 3D image with dOCT contrast.

The frequency bands are chosen such that we obtain a strong contrast between
B. lactucae and plant cell walls. Figure 5.1(b) shows the contrast optimization
process. From a 2D dOCT image B. lactucae was manually segmented and plant
cells above a threshold outside the B. lactucae region were selected as plant cells.
Their amplitude spectra (AS) were obtained and compared. The AS shows that
plant cells have a large amplitude at 0 Hz and the AS decays almost fully at 0.7
Hz, the first non-zero frequency. In contrast, B. lactucae has a slowly decaying
AS, while having fewer signal than plant tissue at 0 Hz, the stationary component.
Thus B. lactucae gives a relatively high signal for intermediate frequencies, which
we attribute to their sub-cellular motion. Plant cells give a relatively high signal at
0 Hz, which corresponds to a stationary object. Note that the sharp peaks around
16 and 27 Hz are due to fixed pattern noise and are not consistently present in the
plant tissue pixels.

The difference in the AS between B. lactucae and plant cells is even more clear
from analyzing their ratio in the middle right panel. At 0 Hz, the ratio is low, indi-
cating that it correlates more strongly with plant cells. The 0 Hz signal was chosen
as the blue color band, highlighting stationary tissue structures. The AS ratio is
high for frequencies between 0.7 Hz and 4.8 Hz, which we chose as the green color
band. The signal at these intermediate frequencies highlights sub-resolution motion
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Figure 5.1: (a) Overview of dynamic OCT processing: a series of B-scans are acquired and for each
pixel the amplitude over time is Fourier transformed to obtain the amplitude spectrum (AS). The log of
the mean AS in three frequency bands provide the intensity for the three colors, resulting in a (false
colored) RGB dynamic OCT image. Repeating this for each B-scan gives a 3D dOCT image. (b) Dynamic
OCT contrast analysis between between B. lactucae and plant cell walls. The ratio between the average
AS of B. lactucae and plant cell walls spectrum gives a values below 1 for 0 Hz frequency (blue), high
values for 0.7-4.8 Hz (green) and medium values for 5.5-16.4 Hz (red). Combining the color channels as
0.3𝑅+1.3𝐺−0.8𝐵 gives good separation between B. lactucae and plant tissue (right). (c) The maximum
intensity projection of the normal OCT image, the dynamic OCT image and the tryphan blues stained
brightfield microscopy (BM) image of the same sample. (d) Comparison of DIC microscopy and dOCT
on alive and dead spores. (e) Example en face images of infected lettuce leaves with different features
indicated.

at a low speed, such as in B. lactucae hyphae. The high frequencies (5.5-16.4 Hz),
chosen as the red color band, show a lower AS ratio than intermediate frequencies,
but as the value is higher than 1 it still correlates more with B. lactucae than with
plant cells. Note that in the shown dOCT images plant cells also have green and
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red components, which we attribute to dynamic processes inside the cell, such as
cytoplasmic streaming. The false-colored dynamic OCT images do not give a bi-
nary contrast between plant cells and B. lactucae, but while giving good contrast
between plant tissue and B. lactucae, it also reveals distinct biological activity of dif-
ferent tissue types. For segmentation and quantification of B. lactucae colonization,
a binary contrast is needed, which is obtained by combining the signals from the
color channels. The optimized contrast is found to be 0.3R+1.3G+0.8B that gives
a good separation between plant cells and B. lactucae as shown in the histogram.

To validate that the bright green structures in the images are indeed B. lactucae
hyphae, multiple leaf discs were imaged with dOCT, and subsequently stained with
Trypan blue, cleared, and imaged with brightfield microscopy (BM) (see Methods).
Figure 5.1(c) shows the convincing correspondence between the green structures in
the dOCT image and the trypan blue-stained hyphae in a BM image. Note that the
conventional OCT does not provide distinctive contrast between B. lactucae hyphae
and plant cells. This clearly shows the contrast enhancement of dOCT.

The origin of the dynamic contrast was further verified using B. lactucae spores
in Fig 5.1(d). Using BM with differential interference contrast (DIC) (see Methods),
the motion of the scattering cellular content in the (germinating) spores could be
visualized (Visualization 1). Real time OCT B-scan imaging shows this motion as
fluctuating speckle inside the spore, similar to the speckle fluctuation in hyphae
growing inside a leaf. The dynamic OCT image of living spores shows the bright
green color of the spores and germ tubes (see arrows). Note that the static top and
bottom interface of the spore have a blueish color. Killing the spores with a short
exposure to heat from a flame stopped the biological activity inside the (germinat-
ing) spores. This was immediately visible in the OCT images where speckle became
static, resulting in a a purple (red and blue combined) colored dOCT image of the
spores. These imaging results of germinating B. lactucae spores confirm that the
dOCT contrast of hyphae comes from the biological activity inside the living B. lac-
tucae structures. While BM with DIC contrast only visualizes the sub-cellular motion
of spores in a transparent medium, dOCT can also sense and localize this dynamic
signal in 3D within a living leaf and thus visualize B. lactucae hyphae in-vivo.

Figure 5.1(e) shows examples of in-vivo en face images of B. lactucae infected
leaves. The top image shows a clear hyphae with two haustoria (a specialized
structure that penetrate the plant cell to suppress its immune system and extract
nutrients). Note that the plant cell walls are red-green colored due to small scale
cellular activity of plant cells. The blue accents correspond to the strong reflection
of the horizontally oriented cell wall surfaces that are more static. The middle
image shows an infection in a resistant lettuce genotype, whose immune response
triggers cell death. Dead plant cells give a strong static signal, which is blue in the
dOCT image. Here the exact color of the B. lactucae is less distinct from that of
living plant cells, but combined with their structure they can still be distinguished,
especially when using the full stack of en face images. The bottom image shows
the epidermal layer, where the epidermal cells are clearly visible, with blue-colored
patches for the strongly reflecting top interface of the leaf. Three stomata are visible
in a bright green color, indicating that they exhibit a lot of sub-cellular activity. This
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could be a response to the near-infrared OCT imaging light (820-980 nm) or an
inherent property of these cells. As we also observed this in non-infiltrated leaves,
this activity is not caused by leaf infiltration. These three images illustrate different
functional information that can be obtained from dOCT images beside the clear
B. lactucae contrast and indicate the potential of dOCT to not only image pathogens,
but also distinguish different plant cells.

5.3. Quantification of Bremia lactucae in three let-
tuce genotypes

Accurate imaging of the length or volume of B. lactucae hyphae can be an objective
and precise method to quantify the susceptibility of a lettuce genotype to disease.
To test this, two experimental replicates, each of 12 inoculated leaf discs (24 in
total) of three lettuce varieties with different levels of resistance to B. lactucae were
imaged five days post inoculation (dpi) (Fig. 5.2(a)). Imaging was performed at two
random areas per leaf disc to give a total of 48 volumetric images, which were then
segmented with the pipeline visualized in Fig. 5.2(b). First, the optimum B. lactucae
contrast, as displayed in the histogram in Fig. 5.1(b), was calculated. Second, a 3D
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Figure 5.2: (a) Overview over the dOCT imaging process for B. lactucae resistance quantification. (b)
B. lactucae segmentation pipeline for dynamic OCT volumes. The images are a maximum intensity
projection (before threshold) or an axial sum of the non-zero pixels (after threshold). (c) Different
dOCT-based measures for degree of B. lactucae infection per volume for each genotype.
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Gaussian filtering with a small (𝜎 = 3 µm) kernel enhanced the signal of the dense
hyphae, with respect to that of thin plant cell walls. Third, leaf veins and stomata
that appeared bright in the B. lactucae contrast image due to their sub-cellular
activity were manually segmented out. Fourth, a global intensity threshold was
applied. The threshold value was identical for all volume images and was chosen
such that most noise was removed. Fifth, small objects were removed with a filter,
resulting in the segmented B. lactucae hyphae. Sixth, the B. lactucae voxels were
summed to obtain their volume, while the amount of voxels after skeletonization
was summed as a measure of hyphae length. In our processing, some less intense
hyphae (e.g. indicated by the white arrow) were lost, but the majority of the
hyphae was accurately detected, making the segmented volume or length still a
good measure of the degree of colonization.

Each of the 48 3D dOCT images was also manually investigated on the presence
of B. lactucae hyphae, which results are shown in the histogram in Fig. 5.2(c). The
resistant Bedford variety had 4/16 volumes colonized. Within these few infected
Bedford samples, the amount of hyphea was small, with a volume below 0.2 nl/mm2

and length below 3 mm/mm2. This shows Bedford does not get infected easily and
that, when infected, the immune response in Bedford limits the hyphae growth. The
intermediate-resistant Iceberg variety had 6/16 colonized volumes. This are only a
few more than Bedford, but the B. lactucae hyphae had spread wider indicated by
the larger hyphae volume and length. Iceberg has a few samples which are more
heavily infected (volume >0.5 nl/mm2 and length >5 mm/mm2), but the difference
between Bedford and Iceberg is not significant (Mann-Whitney test 𝑝 = 0.16 and
𝑝 = 0.17 for volume and length respectively), likely due to the limited number
of infected samples. The susceptible Salinas variety had 15/16 colonized volumes,
and the B. lactucae hyphae were present throughout the whole volume. This is also
reflected in the quantified volume up to 2 nL/mm2 and length up to 17 mm/mm2.
The difference with both Iceberg and Bedford are significant (respectively 𝑝 = 9.3 ⋅
10−5 and 𝑝 = 1.2 ⋅10−5 for volume and 𝑝 = 6.8 ⋅10−5 and 𝑝 = 1.2 ⋅10−5 for length).
The results show the potential of dOCT to quantify infection and distinguish between
genotypes with different degrees of susceptibility.

5.4. Longitudinal imaging of B. lactucae growth
The strength of OCT to image label-free and in-vivo enables imaging the progress
of the pathogen infection over time. To demonstrate this ability, we imaged in-
fected leaf discs from the susceptible salinas variety twice a day from 3 to 7 dpi
(see methods). Figure 5.3(a) gives an example of a dOCT imaging sequence where
the progress of the infection over the course of the experiment is clearly visible.
Next, the hyphae were segmented in the 3D dOCT images of the last time points
(where the network is complete), manually cleaned up (see methods), and divided
into smaller point clouds based on the moment of first appearance. Figure 5.3(b)
shows the point cloud, colored by the time period in which the hyphae have grown.
Interesting to observe is that within a single time interval of 12 hours often com-
plete, long hyphae are formed, which then either stop growing or deviate into a
deeper layer that is not imaged due to the limited depth of field. The 3D informa-
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Figure 5.3: (a) Progression of B. lactucae infection over time visualized by the maximum intensity
projection of Gaussian filtered B. lactucae contrast images. (b) The segmented point cloud of B. lactucae
hyphae, colored by the time period of growth. (c) B. lactucae hyphae volume over time for several
samples. (d) A close up of hyphea that loose their activity while new active hyphae develop. (e) A close
up of two images taken with 40 minutes in between, and a zoom-out image 15 hours later. The arrows
indicate the newly grown hyphae and the white-dashed box the area of the first two images.

tion that is obtained with OCT is helpful to interpret the origin and growth process
of the hyphae. For example, the hyphae indicated by arrows grew at a different
depth from the older hyphae, and thus do not originate in this older hyphae as
branch. The hyphae volume over time of this and two other samples are plot-
ted in Fig. 5.3(c). While the amount of samples is insufficient to draw biological
conclusions from the volume growth over time, the figure shows the potential of
measuring disease progression in time in a quantitative way.

An interesting observation during the time-lapse was that sometimes hyphae
loose their activity and are not visible in later images. The white arrow in Fig. 5.3(a)
indicates such a hyphae. Sometimes this is caused by the focus being at a different
depth, but often the cause is biological, namely a change of activity in the hyphae.
Figure 5.3(d) shows an image where over the course of a day a hyphae (white
arrow) almost disappeared in the B. lactucae contrast image (top row). When
looking at a single en face dOCT image, the hyphae that was first bright green
has become hollow with a more brown edge, a similar color as that of plant cell
walls in dOCT. Note that the freshly grown hyphae in the same image proves that
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the reduced activity is not the result of a poor image quality. We observed this
effect also in other time-lapse images, where, especially after sporulation, many
hyphae lost activity. Most likely these hyphae are in the process of dying off, and
the scattering content has been pushed to the region where the disease is active
now (e.g. the sporangiophores). Though this effect can complicate the precise
quantification of all hyphae, it can also provide unique insights in the vitality of
B. lactucae hyphae, for example in response to disease control measures.

To study B. lactucae growth speed in a short time frame, two images were
obtained of the same sample with 40 minutes in between while the sample remained
infiltrated (see Fig. 5.3(e)). The shown close-up shows three hyphae tips that grew
in this 40 minutes period. By measuring the added hyphae length in the 3D dataset
(36 µm, 70 µm, and 75 µm for tip 1-3 respectively), we could estimate the hyphae
growth speed at 54 µm/h, 105 µm/h, and 115 µm/h. The next image visualizes the
same area 15 h later and shows that the hyphae of tip 2 and 3 have grown over a
significant distance and branched out, while the hyphae at tip 1 barely grew further.
The extra distance the hyphae grew over this 15 hour is about 0.4 mm for branch
4, 0.5 mm for branch 5 and at least 0.5 mm for branch 6, which grew out of the
imaged area. This corresponds with lower grow speeds of 25-35 µm/h. However,
the active growth speed is probably higher, as the growth stopped or the hyphae
grew out of focus, during the 15 h period as the following images (not shown here)
showed no further growth.

Summarizing, the time-lapse measurements shows the potential of dOCT imag-
ing to visualize and quantify the progression of B. lactucae infection over the course
of several days. To our knowledge this is the first time this has been visualized and
quantified. It opens up ways to investigate the vitality and to quantify the growth
speed of individual B. lactucae hyphae and there dependence on resistance.

5.5. Discussion
In this work, we demonstrated that dynamic OCT can image the presence and
growth of Bremia lactucae in lettuce in-vivo in 3D, in-vivo, and over time. Using
segmentation, we could quantify the volume and length of B. lactucae hyphae in
the imaged sample and estimate the rate of growth. This imaging method has a
great potential to yield new insights in the interaction of plant and pathogens.

Further research could deepen the understanding of the dynamic OCT signal
and its relation to biological processes. Some insight already was obtained from
imaging germinating spores using DIC brightfield microscopy. However, better un-
derstanding of the contrast and expected variation in contrast could yield more
functional biological information about, for example the vitality or activity of the
pathogen. Also, the correlation of AS at different frequencies with biological activ-
ity could be further investigated. The frequency content of the AS may be specific
enough to distinguish between different biological processes such as nutrient trans-
port and plant growth and thus identify where they take place. The examples of
dead plant cells and reduced activity in previously active hyphae show that more
biological information is contained in the dynamic signal which can be explored in
future studies.



5

110 5. In-vivo label-free 3D OCT imaging of downy mildew in plant leaves

Infiltrating the leaves, necessary to obtain sufficient imaging depth, could affect
the plant cells and the plant-pathogen interaction. PFD, used for the longitudinal
study, does not require pressure and is believed to have minimal physiological im-
pact on the plant [11]. The longitudinal study showed that B. lactucae growth was
not stopped due to the infiltration cycles, and even the water-infiltrated leaves of
experiment 1 showed sporulation the day after imaging. These results show that
infiltration, especially with PFD is compatible with in-vivo imaging and does not
disrupt B. lactucae infection.

Dynamic OCT generates a large amount of data for imaging a small volume
with high resolution. This can be reduced after calculating the AS and selecting the
region of interest but is still a limiting factor for large scale application. Non-linear
sampling in time could reduce the required amount of frames while still obtaining
a reasonable contrast [12]. Note that the hyphae can be seen in real time by the
fluctuating speckle in the normal OCT B-scan imaging mode (Visualization 1). Using
real-time image processing with AI methods, trained by dOCT images, real-time B-
scan dOCT imaging could be possible as well. Also for improving the accuracy and
speed of segmentation, recent development in AI-based segmentation methods
could be deployed [13].

The dOCT imaging can also be used to image pathogens other than B. lactucae.
Similar contrast was obtained for downy mildew infection in radish and Arabidopsis
leaves. Also for imaging roots infected with root-knot nematodes (Meloidogyne
incognita), dOCT gave an enhanced contrast compared to normal OCT. For imaging
bacteria, the resolution of OCT is not sufficient, though the activity of a bacterial
colony or the plant-stress response may still give a dynamic OCT contrast that can
be helpful in studying these diseases.

Concluding, this work shows the great potential of dOCT imaging for label-free
in-vivo 3D imaging of plants. By quantifying the volume and length of the pathogen
structures, we obtained quantitative data that relates to the susceptibility of the
plant variety. The longitudinal study demonstrated that the imaging is compatible
with the pathogen growth. Moreover, it enabled quantification of hyphae growth
speed, as well as disease progression over the course of days. This opens the door
to a new understanding of plant-pathogen interaction.

5.6. Methods
5.6.1. Imaging setup and dOCT processing
The OCT measurements were done with a Ganymede II HR spectral domain OCT
setup (Thorlabs, Germany), also used in previous work [5]. The system has a
36 Hz A-scan rate and a center wavelength of 900 nm and a 160-nm bandwidth,
resulting in a 2.1 µm axial resolution in tissue. The OCT system is used with a
scan lens (OCT-LK2-BB, Thorlabs, Germany) and yields a lateral resolution of about
3 µm. Single B-scan data were acquired using ThorImage (version 5.4.1, Thorlabs),
and 3D dynamic OCT data was acquired using a Python wrapper around a C++
module that was included in the ThorImage package. 3D scans were automatically
divided into blocks of around 40 dynamic B-scans that were saved before starting
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the next block. The B-scan repetition time (including overhead for scan mirror
flight-back) was 14.6 ms and 29.3 ms for dynamic OCT with 100 and 50 frames,
respectively, giving a total acquisition time of 1.46 s per dynamic B-scan. With
a lateral sampling of 3 µm and a lateral scan width of 360 and 887 A-lines, the
B-scan width was 1.08 mm and 2.66 mm respectively. The width on the slow
axis was 600 µm for experiment 1 and 900 µm for experiment 2. The volume
acquisition time was 4.9 minutes and 7.3 minutes for experiment 1 and experiment 2
respectively, excluding a few minutes per C-scan for saving the raw data in between
the acquisition blocks.

The raw OCT data per B-scan was processed in the conventional way, consisting
of subtracting the reference spectrum, linearization in wavenumber domain, spec-
tral reshaping with a Hanning window, dispersion correction, an inverse discrete
Fourier transform (DFT), and taking the absolute value. For the 50 or 100 B-scans
at the same location, a DFT of the OCT amplitude data was taken in the time direc-
tion and the amplitude spectrum (AS) was obtained by taking the absolute value
of the temporal DFT. The logarithm of the average value of the AS in the three
frequency bands of 0 Hz (blue), 0.7 Hz to 4.8 Hz (green) and 5.5-16.4 Hz (red) was
taken as intensity for the color channels. The dynamic range of the intensity that
was mapped to the RGB value (0-255) was determined for each color channel sep-
arately. The top limit was the global maximum value of the average AS within the
color band over all the data within the experiment (excluding coverslip interfaces).
To obtain the lower limit of the dynamic range, the histogram was calculated over
the voxels of the value before taking the logarithm. The peak location of the his-
togram is a measure for the noise intensity level, as most voxels only contain noise.
The lower dynamic range limit was then the average histogram peak location over
all volume images within the experiment. For displaying purposes (not for segmen-
tation), the contrast of the dOCT images in the figures is enhanced by saturating
the higher values. Sometimes there occurred a small drift in the axial position of the
sample while saving raw data between acquisition blocks. This drift was corrected
by an axial shift of the next block, with a value that was automatically determined
based on the correlation of the neighboring frames.

5.6.2. dOCT image segmentation
The segmentation for experiment 1, the quantification of infection, was done in
Python 3.7 according to the pipeline shown in Fig. 5.2(b). The standard deviation
of the Gaussian filter kernel was chosen to be 1 pixel in lateral direction and 3/1.37
pixels in the axial direction, corresponding to 3 µm isotropically.

Masks to filter out veins and stomata were obtained in imageJ based on the
maximum intensity projection (MIP) of the Gaussian filtered B. lactucae contrast.
When the to be filtered out objects were close to hyphae, the mask was carefully
made not to remove hyphae. If, based on the MIP image, there was doubt of what
to remove, the dOCT image depth stack was investigated on the presence and
location of hyphae close to the structures that had to be removed by the mask.

The global threshold was chosen at 40 (based on color values ranging from
0-255 and top and bottom reference values as discussed above). Small objects
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were removed that had a size below 256 voxels with a connectivity of 4 voxels.
The total hyphae volume then was obtained by counting the voxels after filtering,
multiplying this number with the voxel volume and dividing it through the imaged
surface area to get the volume per imaged area. The hyphae length was obtained by
skeletonizing the segmented structures and multiplying it with the lateral pixel width
(3 µm). This is an approximation as on a diagonal, the length could be √2 larger and
vertically the distance between pixels is more than a factor 2 lower. The potential
error is probably limited as most hyphae grow in the horizontal direction. Moreover,
a potential bias would be similar for different genotypes making the comparison of
colonization still trustworthy.

For the time-lapses the step of removing veins and stomata was first omitted,
and the threshold was adapted per volume to obtain a good amount of hyphae
while avoiding noise that could not be easily segmented out. The raw point clouds
were further processed in using CloudCompare (V2.13.alpha). The point cloud of
the last image of a time-series was manually cleaned up by removing stomata, veins
and noise that was no B. lactucae. Disappeared hyphae or hyphae that were more
clear in earlier images were added and aligned to obtain a pointcloud that was as
complete as possible. Then the point cloud was divided based on the period that
the hyphae grew, see Fig. 5.3(b). For cleaning up the point cloud, adding hyphae
and determining the time of growth, the 3D dOCT image stack was used as guide
to check for the presence of hyphae. This segmented point cloud is then used to
quantify the B. lactucae colonization over time, by multiplying the amount of points
in the point cloud with the voxel volume and dividing through the total imaged leaf
area.

Growth speed between the images in Fig. 5.3(e) was estimated manually based
on the image stack in ImageJ.

5.6.3. Sample preparation and experimental design
Lettuce plants were cultivated at 21∘C under long-day conditions (16 h light, 100
µmol/m2/s, 70% humidity). Leaf discs (10 mm diameter) from four-week-old plants
were placed, with the abaxial side up, in petri dishes on moist filter paper and inoc-
ulated with Bremia lactucae (race Bl:33EU) by spraying them with sporangia sus-
pension (40 sporangia/µL, experiment 1) or by dabbing with B. lactucae-infected
lettuce cotyledons that were covered with sporangiophores (experiment 2). In-
oculated discs were incubated at 16∘C under short-day conditions (9 h light, 100
µmol/m2/s). For experiment 1, leaf discs from three cultivars (Bedford, Iceberg,
Salinas) were sampled at 5 dpi, vacuum infiltrated with tap water, and imaged with
a water droplet on the surface to reduce the surface reflections. In experiment
2, discs of cultivar Salinas were imaged twice daily, at the beginning and end of
the light period, between 3 and 7 dpi. For imaging, discs were submerged in per-
fluorodecalin (PFD, Sigma-Aldrich) in a custom mount, and covered with a cover
slip. PFD infiltrates the air spaces in plant leaves without applying vacuum because
of its low surface tension. After imaging, discs were rinsed with tap water and
returned to the growth chamber. PFD infiltration had no visible damaging effects
and disappeared within 30 minutes after rinsing. To visualize B. lactucae coloniza-
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tion with brightfield microscopy (BM) for validation, the leaf discs were fixed in an
ethanol-acetic acid solution (2:1, v/v) directly after dOCT imaging. Afterwards they
were stained with trypan blue and cleared [14]. Germinating B. lactucae spores
for imaging (Fig. 5.1(d) were prepared by dabbing lettuce seedlings covered in
sporangiophores onto water agarose pads (1.5% agarose) to deposit spores and
incubation at 16 ∘C in the dark for 2 h. For OCT imaging, the spores were sub-
mersed in water to reduce deformation and surface reflection intensity. For BM
imaging, the spores were deposited on a wet microscope glass.
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6
Conclusion and outlook

This chapter first concludes this thesis, summarizing the contributions of this thesis
to OCT plant imaging and identifying the role that OCT can take in the field of plant
imaging. Then it gives an outlook on promising research directions that can be
derived from the work in this thesis. First an outlook on OCT plant imaging and
prospects for further application is given, followed by an outlook on OCT resolution
enhancement, which was the major topic of two thesis chapters.

6.1. Conclusions
The application of optical coherence tomography to plant imaging and phenotyping
has been a clear guideline through the work in this thesis. Three issues have been
addressed in this work: the limited OCT imaging depth in scattering plant tissue,
the required high resolution to resolve important features inside the plant, and the
limited specificity of OCT for plant imaging.

The limited OCT imaging depth in plant tissue, especially in leaves, could largely
be attributed to the inter-cellular air spaces that play a role in the gas-exchange
of leaves with the atmosphere. The large refractive index contrast between these
air spaces and the surrounding tissue causes scattering, refraction, and wavefield
aberrations, leading to a poor imaging depth. In chapter 2 of this work, we extended
the OCT imaging depth by infiltrated the leaves with water or perfluorodecalin to
reduce the refractive index contrast. This allowed to image entire leaf cross sections
and quantify laterally resolved leaf thickness.

OCT resolution enhancement was shown in axial and lateral direction. Chapter 3
presented spectral estimation (SE) with the iterative adaptive approach (IAA) for
OCT reconstruction with super-resolution. Our SE-OCT method gave, dependent on
the SNR, a 2 to 10 times better resolution than conventional reconstructions, with
a sub-second B-scan processing time. In chapter 4, SE-OCT was made compatible
with computational refocusing based on the coherent OCT signal. This allowed the
development of an OCT imaging setup with sub-micrometer lateral resolution over
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a large depth range, and an axial resolution below 2 µm, while using a cost-effective
narrowband SLD in the visible range. Key in this application was the translation of
SE-OCT to an extrapolation of the interference signal in the 𝑘-domain using missing-
data IAA so that it was compatible with ISAM inverse scattering and computational
adaptive optics (CAO). The high 3D resolution enabled visualization of sub-cellular
details for plant tissue.

As OCT imaging uses back-scattered light, it does not generate contrast be-
tween equally scattering structures. This lack of specificity is a major drawback for
the use of OCT to plant imaging, especially when applied to imaging pathogens
inside plants. In chapter 5, we addressed this lack of specificity using functional
OCT imaging. Because downy mildew hyphae contain scattering structures that
are constantly in motion, it gives a dynamic speckle pattern on the OCT images.
This is used as contrast to distinguish between the pathogen and the less dynamic
plant tissue. With this dynamic OCT (dOCT) we could visualize downy mildew in
3D and in-vivo while it was growing inside a lettuce leaf. Moreover, as dOCT is
a label-free imaging method, no fluorescent labeling or staining was needed to
generate this contrast. In our work, the origin of the dynamic contrast was ana-
lyzed, downy mildew hyphae were segmented to quantify differences in pathogen
in-growth between plant genotypes, and longitudinal imaging of pathogen growth
over several days was demonstrated. These results demonstrated that dynamic
OCT is sufficiently specific to image pathogens inside plants with high contrast.

The proposed solutions to improving the imaging depth, resolution and speci-
ficity of OCT plant imaging require more sample preparation and lead to larger
data sets and longer imaging times. This makes it challenging to apply OCT plant
imaging to high-throughput plant phenotyping. However, compared to conven-
tional microscopy, OCT has some significant advantages which have become clear
in this thesis. OCT has the unique ability to image plant tissue in-vivo with a high
resolution in 3D without labels.

The label-free imaging in uncleared tissue reduces the sample preparation time
and effort compared to conventional microscopy, and allows for in-vivo imaging
structures that are hard to label. Functional OCT imaging can give the required
specific contrast. Imaging in-vivo allows for longitudinal studies and imaging plant
processes that take place over time. The high 3D resolution allows for imaging
structure and processes at cellular and even sub-cellular level, which reveals funda-
mental processes that cannot be directly imaged with macroscopic imaging sensors.
Thus, though OCT is less suitable for high-throughput phenotyping, it is a promising
tool for plant imaging and phenotyping at microscopic level. Complementing con-
ventional microscopy techniques, it is likely to have a major impact in the field of
plant science in understanding fundamental plant processes. Some potential areas
of impact will be discussed in the next section.

6.2. Outlook on OCT plant imaging
Three promising directions of further study on the application of OCT in plant sci-
ence can be identified. First, we discuss extending the application range of OCT
imaging plant to roots. Second, we present and discuss the application of dOCT to
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Figure 6.1: OCT image of a basil root with aerenchyma (green arrows). (a) B-scan along the root
direction and (b) shows a 3D rendering of the volumetric OCT image of the root section.

other pathogens and processes. Third, other functional OCT imaging could have
important applications in plant imaging.

6.2.1. Root imaging with OCT
Plant roots are an important part of plants as they take up water and nutrients.
Because roots grow in optically impenetrable soil, root imaging and phenotyp-
ing is challenging. However, when growing them in water [1], on transparent
substrates [2], in rhizotrons (against a transparent window) [3] or in transparent
soil [4, 5], in-vivo OCT imaging of roots is possible. As roots do not have gas-
exchange pockets like leaves, water infiltration is not needed and roots can be
imaged up to large depths without further sample preparation.

Particularly of interest could be the investigation of morphological changes in
roots due to cultivation in a hydrophonic system (roots growing in water) [6] or
flooding [7]. For example, roots submersed in water form air channels (aerenchyma)
to allow for oxygen flow to the roots [7]. This response to flooding stress is cur-
rently investigated using physical slicing of root tissue and subsequent imaging with
brightfield microscopy [6]. Slicing is labour intensive and typically allows imaging
at only a few slices. High resolution OCT cannot only do this faster and non-
destructively, but also enables quantification of the 3D structure of aerenchyma
and how they take shape over time. Figure 6.1 shows an example image of a root
of a basil plant obtained with the Ganymede OCT system that was grown in water
with a lack of oxygen. The green arrows indicate an aerenchyma caused by oxygen
deficiency.

Using functional OCT imaging, it could be possible to visualize and quantify pro-
cesses such as sap flow or organ initiation. Quantification of flow is a challenging
task, which will be further elaborated on in section 6.2.3. Because of their small
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cylindrical structure, plant roots would also be ideal samples to apply high resolu-
tion tomography, such as optical coherence refraction tomography [8]. This would
enable 3D imaging of the internal root structure and reduce occlusion behind the
vascular bundle and reduce speckle.

6.2.2. Dynamic OCT imaging of plants
Chapter 5 presented dOCT for the imaging of downy mildew in lettuce. As this
was the first study on dynamic OCT plant imaging, there remain many questions
and opportunities that need further research. First, the dOCT acquisition and data
processing could be further optimized, to increase robustness and get more infor-
mation out of the signal. Second, dOCT can be used for imaging other pathogens
and plant processes.

Dynamic OCT optimization for plant imaging
Most information in the dOCT images originate from fluctuations with relatively low
frequencies up to 8 Hz. Thus, the image repetition rate can be significantly reduced
to around 15 to 20 Hz. Using a faster point-scanning OCT or a line-scan or full-
field OCT setup [9] while reducing the image repetition rate makes it possible do
dOCT on (sub) volume level, rather than B-scan level dOCT that is done in this the-
sis. This would allow for much faster volumetric imaging while still capturing slow
fluctuations that require a long imaging time. Moreover, this would enable compu-
tational depth-of-field extension, as the phase information from fluctuating speckle
will then be sufficiently correlated along the slow scan direction to do coherent
post-processing.

For longer longitudinal studies, we sometimes observed that the intensity of the
dynamic OCT signal of the B. lactucae hyphae decreases, especially after sporula-
tion. A possible reason for this is that the hyphae die off once the pathogen has
released its spores. It could be very interesting to see how pesticides, resistance-
stimulating microbes, and varied plant immune responses influence the dynamic
activity of the pathogen in the leaf. Thus, the dynamic signal can be used not only
to create contrast between pathogen and plant tissue, but can also tell more about
the vitality of the pathogen inside the leaf. This could yield very interesting and
useful insights in pathogen resistance.

Because dOCT needs a time series for every tomographic scan, dOCT gener-
ates a lot of data. By smarter sampling in time based on compressed sensing
techniques, dynamic signal at different time-scales could be captured with fewer
data [10]. Optimizing the combination of different frequencies for the best contrast
between pathogen and plant tissue is another important direction of further study.
This is analogous to finding spectral indices in multi spectral imaging to measure
for example vegetation cover or plant disease infection [11]. The data sampling
could then be tailored to the combination that gives the best contrast. Lastly, deep
learning (DL) methods enable easier recognition and segmentation of the pathogen
in the plant. During live OCT B-scan imaging, it was often possible to recognize the
B. lactucae within a shorter time frame than used for the dOCT image acquisition.
Applying DL methods could simplify segmentation, reduce the required amount of
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Figure 6.2: Dynamic OCT images of downy mildew a in radish leaf (a) and a root-knot nematode in a
pepper root (b). i: infection; h: hyphae; pc: plant cell; nb: nematode body; ne: nematode egg

data for robust detection, and may even enable real time pathogen imaging.
The dynamic speckle signal that gives dOCT its contrast is also the source of

contrast in many other functional OCT imaging methods. For example, biospeckle
OCT [12], OCT correlation decay speed imaging [13], optical coherence angiogra-
phy [14], and logarithmic intensity variance (LIV) [15] also measure the magnitude
or time-scale of OCT signal amplitude fluctuations. A major difference within these
methods is that some, like dynamic OCT, distinguishes the object of interest based
on the time-scale of the fluctuations while others, like LIV only distinguish between
static and dynamic. The contrast that is obtained with these various methods is
often similar. It is useful to compare the differences between the methods and
choose one that suits the application best.

Imaging other pathogens with dynamic OCT
Bremia lactucae infection in lettuce served as a model pathogen-plant system in
Chapter 5. Thus, dOCT could also be applied to image other pathogens in plants.
Figure 6.2 shows two examples: downy mildew in a radish leaf and a root-knot
nematode (Meloidogyne incognita) in a pepper root.

Radish leaves have larger cells than lettuce leaves, resulting in a more open
image where the mildew hyphae can clearly be distinguished, see Fig. 6.2(a). Also
the place of infection (indicated with i) is clearly visible inside the large epidermal
cell. The contrast in color between the cell walls and the hyphae is less strong than
with B. lactucae in lettuce, but based on the structure the hyphae can be clearly
distinguished by a trained eye or a neural network.

Once root-knot nematodes have entered the root and settled, their body be-
comes spherical and they put all their energy in producing eggs that stick together
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in a gel. Root-knot nematodes and their eggs have a strong sub-cellular activity
that causes a good contrast with dOCT between them and the plant root cells, as
shown in Fig. 6.2(b). The OCT imaging depth is sufficient to see at least half of the
body, including some internal structure, as well as the nematode eggs.

Bacterial infections are more challenging to image with dOCT as OCT does not
have the resolution to resolve bacteria. For bacteria, dOCT may image the activity
of a bacterial colony or the active immune response of the plant, which is less
direct than imaging the pathogen itself. Still, the two examples in this section show
that dOCT can be applied to visualize more types of plant pathogens than those
presented in chapter 5.

6.2.3. Other functional OCT plant imaging
Besides dynamic OCT and biospeckle OCT [12], there are other functional OCT
imaging methods that can be applied to obtain functional information from plants.
Two promising methods, flow measurement and spectroscopic OCT, will be dis-
cussed below.

Flow measurement with OCT
Plants transport nutrients and water between the different organs through vascular
bundles in leaf veins, stems and roots. The vascular bundles contain the xylem and
the phloem [16]. The xylem transports water and minerals from the roots to the
other plant organs, usually in a single direction. The phloem transports nutrients
such as sugar and amino acids between the leaves, where photosynthesis takes
place, to storage organs and places of plant growth. This flow is bi-directional and
more complex.

Quantification of these flow processes yields more insight into the interplay of
different plant organs and the plant’s responses to various types of stress. It could
be especially valuable to study, validate, and improve plant models [17].

OCT can measure flow velocities using Doppler [18] or dynamic light scattering
(DLS) [19]. A challenge of measuring xylem flow could be the limited scattering in
water with dissolved minerals. Without scattering particles in the flow, there will
be no signal to quantify the flow. If the minerals and the surrounding complex do
not provide sufficient light scattering, it may be possible to add scattering contrast
agents, such as nano-particles, in the fluid to obtain sufficient scattering signal.

The phloem consist of living cells with sieve-like cell walls along the channel
direction and microtubules to actively facilitate selective transport of nutrients to
the place where they are needed [16]. Because of this simultaneous but selective
transport of different molecules within the flow cell, normal Doppler or DLS-OCT
cannot be applied as that only works well for bulk motion. However, with DLS-OCT
in combination with a good model of the underlying biology it may be feasible to
probe the cell activity and determine the amount of (bi-directional) transport that
is taking place.

Spectroscopic OCT
Multi-spectral and hyper-spectral imaging is widely applied in plant imaging and
phenotyping [20–22]. The spectral dependency of light scattering relates to the
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chemical composition of the plant tissue, which changes due to biotic and abiotic
stress. Spectroscopic OCT could obtain this functional contrast within the plant
tissue at micrometer scale resolution in 3D [23]. With the large bandwidth of a
supercontinuum (SC) laser, spectral contrast can be obtained over a large spectral
range including the visible light [24]. Due to the inverse relationship between the
axial resolution and the source bandwidth, spectroscopic analysis of the spectrum
reduces the OCT axial resolution as the source width is divided into smaller spectral
windows.

For plant imaging and phenotyping, spectroscopic OCT can be used to study
plant processes at microscopic resolution. It can also be used to understand or to
identify the origin of the spectral contrast in macroscopic spectral imaging, which
can then be used for the high-throughput phenotyping.

6.3. Outlook on computational OCT resolution en-
hancement

Chapter 3 and 4 of this thesis focused on computational resolution enhancement.
Though applicable to OCT plant imaging, it has a much wider scope of applica-
tions. First we discuss two extensions of spectral estimation OCT (SE-OCT): phase-
sensitive SE-OCT and lateral spectral estimation. Then it discusses the relevant
question how SE-OCT relates to resolution improvement using deep learning (DL)
methods. Finally, it discusses some ideas to improve the robustness of computa-
tional adaptive optics.

6.3.1. Reducing phase leakage in phase-sensitive OCT
Phase sensitive OCT is a powerful method to measure motion with nanometer pre-
cision. For example, OCT based vibrometry uses the phase information to quantify
the amplitude and frequency of vibrations of, for example, the organ of Corti in the
ear [25, 26]. When measuring the vibration of closely separated interfaces, phase
leakage may occur between the interfaces, leading to systematic errors [27–29].
This phase leakage, sometimes called signal competition, is especially strong when
a low intensity interface is in the vicinity of an interface with a higher intensity.

IAA-based SE-OCT can preserve the phase information in the OCT image, as
was shown in Chapter 4. Since the weighting matrix in IAA suppresses the signal
from interfaces other than the reconstruction depth, it could also suppress the phase
leakage from a (high intensity) interface in the vicinity. To confirm this effect, a short
simulation study was performed using the 1D OCT simulation framework discussed
in Chapter 3.

Figure 6.3 shows the results of a simulation study on phase leakage reduction
with RFIAA. Interfaces 1 and 2 have an SNR of 36 dB and vibrate with 1.2 kHz and
amplitude of 20 nm. Interface 3 has 100 times the reflection intensity of interfaces
1 and 2, and thus has a higher SNR of 56 dB. It is located 3.0 µm below interface
2, while it vibrates with a frequency of 0.25 kHz and amplitude of 80 nm. As
interfaces 2 and 3 are separated with a distance that is close to the full-bandwidth
DFT (FBW-DFT) and that is smaller than the partial bandwidth DFT (PBW-DFT)
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Figure 6.3: Results for a simulation of phase leakage reduction by IAA-based SE-OCT. (a) M-scan in-
tensity, (b) the phase of the M-scan, and (c) the reconstructed displacement of the three simulated
interfaces.

axial resolution, the phase from interface 3 leaks heavily into interface 2 as seen
in (b) and (c). It is also clear that the phase of the the second interface does not
resolve the high frequency oscillation, but instead shows the low frequency of the
third interface. RFIAA uses only the PBW-DFT bandwidth, and is able to resolve
the interfaces in the M-scan (a). Moreover, it faithfully reconstructs the vibration
amplitude and frequency of the second interface (c).

The phase reconstruction of interface 1 with RFIAA in (c) is a bit more noisy than
the DFT methods. However, the accuracy is sufficient to obtain the amplitude and
phase of the vibration and the same accuracy is maintained for interface 2. These
results show that RFIAA could be a valuable addition for OCT-based vibrometry. This
is especially the case when the axial resolution is compromised with a relatively small
bandwidth swept source to obtain the large axial range that is needed for imaging
the ear [30]. Moreover, RFIAA could also be useful for other phase sensitive OCT
applications (including Doppler OCT) where phase leakage could result in biased
reconstructions.

6.3.2. Spectral estimation OCT in multiple dimensions
Potentially, the results from axial spectral estimation (SE) could be extended to the
lateral direction to obtain lateral super-resolution. This would be an equivalent to
its application on 2D radar imaging [31]. We explored this application and present
some preliminary results in this section.

Lateral SE to obtain super resolution can be performed in an equivalent way
to the axial SE-OCT as discussed in Chapter 3, but then as a 2D SE problem. The
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Figure 6.4: Results for lateral SE-OCT with 2D IAA. (a) Estimated OTFs for the experimental samples,
with the input area for 2D IAA indicated by the white dashed circles. (b) Simulated objects, consisting
of many point scatterers. (c) Normal OCT en face images and (d) the same area estimated with 2D IAA
based on a circular input aperture.

equivalent to the interference spectrum is the field in the pupil plane (i.e. the lateral
Fourier transform of the complex en face image), which can be uniformly reshaped
by the equivalent of the reference spectrum, the optical transfer function (OTF).

Implementation of 2D SE-OCT
There are a few significant differences between the axial SE-OCT and its equivalent
in the lateral direction. First, in the axial direction the interference signal is mea-
sured in the 𝑘-space and transferred to the depth domain in OCT processing, while
in the lateral direction the image information is obtained in the spatial domain by
physically scanning the beam. Axial SE-OCT avoided some inherent disadvantages
of the DFT, but for lateral SE-OCT a DFT needs to be applied to obtain the field
in the pupil plane on which the spectral estimation has to be performed. Second,
the 2D dimensionality of lateral SE creates the problem of rapidly enlarged datasets
and weighting matrices with increasing image size. Moreover, as the OTF in general
has a radial symmetry, the high SNR input spectrum for SE is preferably circularly
shaped, which is incompatible with the fastest IAA implementations. Choosing a
rectangular input spectrum creates low SNR corners, while neglecting some high
SNR data at the edges. Third, accurately estimating the OTF can be challenging as
the OTF cannot easily be measured by a reference measurement, in contrast to the
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reference supplied by the reference arm intensity in 1D SE-OCT.
In a recent work on resolution-enhanced OCT (RE-OCT), the OTF was estimated

using an axial average of the absolute value of the pupil field of a stack of en face
images [32]. This OTF was then used to computationally broaden the field in the
pupil plane, yielding a factor 1.5 lateral resolution improvement. Estimating the OTF
in this way requires, however, that the object has a relatively flat lateral frequency
spectrum. Another option is calibrating the OTF with a reference measurement on
small point particles, but as the shape of the OTF can change due to, for example,
a tilted front interface or sample-induced aberrations, this method is less reliable.
Obtaining the OTF from a small image feature, used as guide-star, could be another
option, but that requires (manual) selection of such a guide-star.

2D spectral estimation results
Figure 6.4 shows results for 2D SE with IAA on an en face OCT image. The first
two columns (TiO2 particles in gelatine and the root of a grass plant) are based
on experimental data, while the last two columns are based on simulations. The
OTF for the experimental data was estimated by taking the average of the absolute
value of the pupil plane field of a stack of en face images, similar as done with
RE-OCT [32], and then smoothing the average with a 2D Gaussian kernel. This
is analogous to laterally averaging the interference spectral signal to estimate the
source spectrum in axial OCT reconstruction. Figure 6.4(a) shows the resulting
OTFs, with the white dashed circle indicating the area that is used for 2D IAA, with
radii of 40 and 62 pixels. 2D IAA gives a clear resolution improvement for the TiO2
particles sample, visible in the much smaller dots in (d) compared to (c). However,
a close look at the points show that they their shape is not isotropic and contain
some tail-like side lobes.

When looking at the medium sparse grass root sample, we see that the speckle
signal that makes up the cell walls is reconstructed by 2D IAA as a net-like structure
with narrow lines. As this is not the expected microscopic structure of a plant root,
it likely is an artefact that 2D IAA creates from the speckle signal to increase its
sparsity.

To confirm this, the 3D OCT signal was simulated of two crossing lines in a
volume with many sub-resolution scatterers with Gaussian-distributed reflectivity
(simulation 1). The used 3D simulation framework is described in chapter 4. Fig-
ure 6.4(b) shows the simulated object. While the normal OCT image shows a
speckle pattern as can be seen in conventional OCT images, the 2D IAA image
shows again a net-like structure formed by narrow lines. The crossing lines in (d)
are better resolved than in (c), showing the improved resolution. However, as the
background also seems to contain a lot of structure, which does not resemble the
true object, the structure in the grass root image is probably also not resembling
the sample itself. This makes it problematic to apply 2D IAA in any object that
contains significant speckle.

In simulation 2, a resolution target element is made up of 48000 point scatter-
ers with a spacing far below the resolution limit. The normal OCT image shows
the slightly blurred lines, which are still clearly distinguishable. 2D IAA images the
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elements with much sharper boundaries, resembling the true structure of the ob-
ject. However, a close look at the elements reveals a pattern of varying intensity on
the lines. This effect was also seen, in a more severe way, with experimental data
from a resolution target. Thus for smooth reflecting surfaces with laterally constant
reflectivity, 2D IAA also creates structure that does not resemble the true object.

Because of the fast increasing input data size in 2D, we limited the spectral
estimation input to a radius of 40 to 62 pixels, giving 5025 to 12061 input points,
and computation times of 64 s to 699 s respectively on a Dell Precision 5820 with
an Intel Xeon W-2223 CPU and 32 GB RAM. Further increasing the input data size
will result in a memory overflow and huge computation times. To include higher
spatial frequency information as input of the spectral estimation, without increasing
the input data size, the en face image can be cropped, or processed per smaller
patch.

Discussion on 2D spectral estimation
Based on the results from measurements and simulations, we conclude that lateral
SE-OCT using 2D IAA does not give reliable imaging results. For a laterally very
sparse object with high contrast, i.e., the lines in simulation 1, 2D IAA could improve
the lateral resolution and resolve small structures. However, these situations are
scarce and the danger of misinterpreting artefacts for structure would, in most
cases, far outweigh the potential resolution improvement.

A potential improvement to lateral 2D IAA would be to measure the object spec-
trum directly in the pupil plane, using a full-field OCT setup. This could eliminate
potential problems arising from the DFT that is used to obtain the field in the pupil
plane. However, it is unlikely that this will solve the problem of erroneous recon-
structed structures from speckle signal.

A relevant question would be whether SE-OCT in the axial direction could have
the same problem of producing non-existing structures from speckle signal. Auto-
regressive spectral estimation, in fact, produced some erroneous peaks [33]. Here it
is good to realize that speckle itself is not the true sample structure, but the coherent
addition of signals from structures that are too small to be resolved. The problem in
lateral SE-OCT is that the energy is redistributed in 2D in a way that does not look
like speckle, but rather like object structure, and is therefore easily misinterpreted.
As the axial speckle size in OCT is determined by the axial resolution, SE-OCT images
this as narrower peaks. Since, the OCT amplitude is still Rayleigh distributed, this
signal could be interpreted in the same way as normal OCT images. Thus, our work
on axial SE-OCT is still reliable.

6.3.3. Relationship between deep learning and SE-OCT
Deep learning (DL) methods such as convolutional neural networks (CNN) and gen-
erative adversarial networks (GAN) have become an important tool in science for
data processing and analysis. Also in optical coherence tomography they have been
used for segmentation, denoising [34], reconstruction of undersampled data [35,
36] and obtaining super-resolution [34, 37]. A natural question to ask here is how
the used SE techniques relate to DL methods.
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SE and DL for OCT reconstruction are similar in that they use prior knowledge
to obtain good images with less available data. However, there are also signifi-
cant differences. While IAA-based SE-OCT assumes moderate sparsity in the OCT
image as prior knowledge, DL obtains the prior information through training of a
neural network. The prior information with SE-OCT is thus more explicitly included
in the (non-parametric) model. It does not require training data, and potential er-
rors in the reconstruction are easier to recognize based on the knowledge of the
method. With DL methods the relationship between input and output is less easy to
interpret. Moreover, it needs high quality training data from relevant samples with
sufficient diversity to faithfully reconstruct samples that deviate from the average
sample. Though our SE-OCT algorithm is faster than comparable methods in litera-
ture, and could be made faster with GPU implementation, DL-based reconstruction
with a well-trained network is likely to be faster than SE-OCT. Moreover, as DL meth-
ods do not explicitly use a model, it could combine axial resolution improvement
with refocusing, lateral resolution improvement, denoising [34] and even segmen-
tation without the need to model that. Currently, SE-OCT gives a larger resolution
improvement than DL-based super-resolution methods [34], but that can change
when DL methods become more sophisticated.

SE and DL methods are not only alternatives, they can also complement each
other. SE-OCT can deliver high resolution training data for a DL network, such that
no expensive hardware is needed for training. DL methods can also be used to im-
prove SE-OCT images, for example by denoising non-sparse image areas, segment-
ing structures of interest or improving lateral resolution. Moreover, DL methods can
be used for real time image reconstruction with enhanced resolution, after which
the SE-OCT with higher axial resolution can be applied to a single recorded volume.
Thus, even though DL methods become better at OCT image reconstruction and
processing, our work on SE-OCT is still a relevant and useful for complementing DL
methods.

6.3.4. Robustness of computational adaptive optics
In chapter 4 we implemented computational adaptive optics (CAO), where we esti-
mated the aberrations using the sub-aperture cross-correlation method. For sam-
ples with a lot of speckle, this method is not very robust because the speckle pattern
is independent for non-overlapping sub-apertures. Correlating independent speckle
patterns may lead to a wrong estimation of the aberrations. Correlating each sub-
aperture with multiple randomly chosen sub-apertures instead of the center aper-
ture improves the robustness [38]. With multiple sub-apertures, the phase error
is over-determined and a least squares (LS) fitting can be performed. In chap-
ter 4, we further increased the robustness by taking the axial moving average of
the Zernike coefficients in axial direction. Using the inverse of the LS error, the in-
fluence of less accurate estimations was reduced, while a Gaussian kernel ensured
smoothness over a small axial range.

This concept could be extended with other ways of regularizing the estimated
aberration coefficients. For example, a more optimal relationship between weight
and LS fitting error could be used, and estimations that are completely unreliable
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could be excluded. Also the accuracy of the correlation itself could be taken into
account with the LS fitting. If the peak in the correlation between sub-aperture
images is broad, the determined shift is less accurate than with a sharp peak.
Weighting these effects and propagating them in the estimation of the aberrations
may improve its robustness and enhance the accuracy.
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